• Title/Summary/Keyword: an air core

Search Result 312, Processing Time 0.028 seconds

SAFETY STUDIES ON HYDROGEN PRODUCTION SYSTEM WITH A HIGH TEMPERATURE GAS-COOLED REACTOR

  • TAKEDA TETSUAKI
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.537-556
    • /
    • 2005
  • A primary-pipe rupture accident is one of the design-basis accidents of a High-Temperature Gas-cooled Reactor (HTGR). When the primary-pipe rupture accident occurs, air is expected to enter the reactor core from the breach and oxidize in-core graphite structures. This paper describes an experiment and analysis of the air ingress phenomena and the method fur the prevention of air ingress into the reactor during the primary-pipe rupture accident. The numerical results are in good agreement with the experimental ones regarding the density of the gas mixture, the concentration of each gas species produced by the graphite oxidation reaction and the onset time of the natural circulation of air. A hydrogen production system connected to the High-Temperature Engineering Test Reactor (HTTR) Is being designed to be able to produce hydrogen by themo-chemical iodine-Sulfur process, using a nuclear heat of 10 MW supplied by the HTTR. The HTTR hydrogen production system is first connected to a nuclear reactor in the world; hence a permeation test of hydrogen isotopes through heat exchanger is carried out to obtain detailed data for safety review and development of analytical codes. This paper also describes an overview of the hydrogen permeation test and permeability of hydrogen and deuterium of Hastelloy XR.

Optimization of Iron Core Structure for Controlling Induced Electric Field Distribution Using the Continuum Design Sensitivity Analysis (CDSA) (설계 민감도법을 이용한 유도 전기장 분포 제어를 위한 철심구조 최적화 연구)

  • Park Joon-Goo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.8
    • /
    • pp.397-400
    • /
    • 2006
  • An optimized iron core structure of stimulating coil are presented in order to control the induced electric field distribution using the Continuum Design Sensitivity Analysis (CDSA) combined with a commercially available generalized finite element code (OPERA). The results show that a Figure-Of-Eight (FOE) coil as well as a circular coil with the proposed iron core structure can increase induced electric field intensity by more than two times and make better field localization, compared with those of existing stimulation coil with a air core. After considering manufacturing constraints, a practical iron core structure based on the proposed optimized one is proposed and its performance is analyzed.

Effect of Swirl Injector with Multi-Stage Tangential Entry on Acoustic Damping in Liquid Rocket Engine (액체로켓에서 다단 접선 유입구를 갖는 스월인젝터의 음향학적 감쇠기능)

  • ;;;;Bazarov, V. G.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.71-79
    • /
    • 2006
  • Swirl injector with multi-stage tangential entry was analyzed to suppress high-frequency combustion instability in Liquid Rocket Engines. In order to analyze the effect of swirl injector as an acoustic absorber, swirl injector was regarded as a quarter-wave resonator and it's damping capacity is verified in atmospheric temperature. It has a finite mode of vibration and natural frequencies which can be tuned to the natural frequencies of a model combustion chamber. The interior air core shape of injector is more stable in the case of using the swirl injector with multi-stage entry than with single-stage entry. Also, when the swirl injector with multi-stage entry is used, tuned-injector length for unstable mode is well agreed with the calculated length. From the experimental data, it is proved that if the interior air core shape of swirl injector is stable, the fine tuned swirl injector can decrease the unstable mode of model chamber effectively and increase the damping rate.

The Optimal Deployment Problem of Air Defense Artillery for Missile Defense (미사일 방어를 위한 방공포대 최적 배치 문제)

  • Kim, Jae-Kwon;Seol, Hyeonju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.98-104
    • /
    • 2016
  • With the development of modern science and technology, weapon systems such as tanks, submarines, combat planes, radar are also dramatically advanced. Among these weapon systems, the ballistic missile, one of the asymmetric forces, could be considered as a very economical means to attack the core facilities of the other country in order to achieve the strategic goals of the country during the war. Because of the current ballistic missile threat from the North Korea, establishing a missile defense (MD) system becomes one of the major national defense issues. This study focused on the optimization of air defense artillery units' deployment for effective ballistic missile defense. To optimize the deployment of the units, firstly this study examined the possibility of defense, according to the presence of orbital coordinates of ballistic missiles in the limited defense range of air defense artillery units. This constraint on the defense range is originated from the characteristics of anti-ballistic missiles (ABMs) such as PATRIOT. Secondly, this study proposed the optimized mathematical model considering the total covering problem of binary integer programming, as an optimal deployment of air defense artillery units for defending every core defense facility with the least number of such units. Finally, numerical experiments were conducted to show how the suggested approach works. Assuming the current state of the Korean peninsula, the study arbitrarily set ballistic missile bases of the North Korea and core defense facilities of the South Korea. Under these conditions, numerical experiments were executed by utilizing MATLAB R2010a of the MathWorks, Inc.

Hysteresis Characteristics of a SFCL using a Magnetic Coupling of Coils with an Iron Core of Two Magnetic Paths (두 개의 자기경로 철심을 갖는 코일의 자기결합을 이용한 초전도 전류제한기의 히스테리시스 특성)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1073-1077
    • /
    • 2009
  • The iron core, which comprises the superconducting fault current limiter (SFCL) using magnetic coupling of coils, can be operated in the saturation region, especially at the initial fault period. This operation of the iron core in the saturation region deteriorates the fault current limiting operation of the SFCL. To solve the saturation problem of the SFCL using magnetic coupling of coils, the iron core with two magnetic paths, which has an air-gap in one of them, was adopted. In this paper, the hysteresis characteristics of SFCL using magnetic coupling of coils, which were wound in the iron core with two magnetic paths, were analyzed. Through comparative analysis on the hysteresis characteristics of the iron core comprising SFCL, the hysteresis characteristics of the iron core with two magnetic paths were confirmed to be kept in the non-saturation region during the fault period and thus, the effective fault current limiting operation of the SFCL using the magnetic coupling of coils could be performed.

Development of a magnetic field calculation program for air-core solenoids which can control the precision of a magnetic field

  • Huang, Li;Lee, Sangjin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.53-56
    • /
    • 2014
  • A numerical method of magnetic field calculation for the air-core solenoid is presented in this paper. In application of the Biot-Savart law, the magnetic field induced from the source current can be obtained by a double integration ormula. The numerical method named composite Simpson's rule for the integration is applied to the program and the adaptive quadrature method is used to adjust the step size in the calculation according to the precision we need. When the target point is in the solenoid and the intergrand's denominator may be zeroin the process of calculation, the method sill can provide an appropriate result. We have developed a program which calculates the magnetic field with at least 1ppm precision and named it as rzBI() to implement this method. The method has been used in the design of an MRI magnet, and the result show it is very flexible and convenient.

Analysis of Flow and Thermal Mixing Responses on Hot Water Discharge by Quencher Devices into an Annular Water pool (원환풀내에서 Quencher Device에 의한 고온수 분출로 일어나는 혼합유동에 관한 연구)

  • Choi, Seong-Seok;Kim, Jong-Bo
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.1
    • /
    • pp.21-30
    • /
    • 1985
  • One of the problems with the Boiling Water Reactor involves the flow and thermal mixings in the suppression water pool high pressure steam discharge into the pool in case of emergency core relief. Varioos heat sensitive devices and pumps for the reactor core cooling are installed in the middle of the suppression pool. Especially the pumps utilize pool water in order to cool the reactor core in emergency cases. In this case, the water temperature for the reactor cool ins should be below a certain temperature specified by the reactor design. In the present investigation, in other to determine the optimum locations of these pumping devices, numerical solutions have been obtained for the model to determine the f low mixing characteristics. Experimental investigations have also been carried out for the flow mixing and for the thermal mixing in the pool during the discharge. Considering that the discharge steam through the Quenching Device becomes hot water immediately in the water pool, the steam- equivalent hot water has been utilized. Examining these characteristices, it becomes possible to deform me the best locations for RCIC, LPCI , HPCI pumps in the suppression water pool for the emermency reactor core cooling.

  • PDF

Shape Design of Slotless Type PMLSM for Improving Thrust Density (Slotless 영구자석형 선형 동기전동기의 고추력화를 위한 형상 설계)

  • 김용철;김규탁
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.7
    • /
    • pp.320-326
    • /
    • 2003
  • Slotless Permanent Magnet Linear Synchronous Motor (PMLSM) has good control ability but thrust density is low. So, this paper proposes inserted core type of slotless PMLSM to improve its thrust density. Inserting the core between windings of each phase, detent force is generated by the difference of magnetic resistance in an air gap. To minimize detent force, this paper applies the neural network to inserted core type of slotless PMLSM. The, Magnetic pole ratio, the width of the inserted core and the width of the coil are selected as a design parameter to minimize detent force. In comparison with inserted core type one, thrust ripple greatly decreases by minimizing detent force and also thrust increases in this optimal model.

The Effect of Field Annealing on Magnetic Properties of Amorphous Alloy (비정질 재료의 자기특성에 미치는 자장중 열처리의 영향)

  • 김원태;장평우;이수형
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.4
    • /
    • pp.180-185
    • /
    • 1997
  • Variations of core loss and coercivity with heat treatment condition have been studied in amorphous ribbon core specimens. All measurements were performed at 10 kHz with a maximum induction of 0.1 T. With increasing annealing time, both core loss and coercivity of core specimens decreased first, reaching minimum values, and increased thereafter. Specimen heat treated in an air showed better soft magnetic properties than those treated in Ar atmosphere. The specimens annealed under magnetic field higher than 6 Oe in radial direction showed reduced core loss and coercivity. The field annealing effects were increased with increasing cooling rate near Curie temperature of the material. The specimen annealed under an applied field in perpendicular direction of the core showed increased coercivity and decreased permeability.

  • PDF