• Title/Summary/Keyword: amyloid $\beta$-protein

Search Result 215, Processing Time 0.03 seconds

Hispidin from the Mycelial Cultures of Phellinus linteus Inhibits A $\beta$-Secreatase(BACE1) and proyl endopeptidase

  • Park, In-Hye;Kim, Sang-In;Jeon, So-Young;Lee, Hee-Ju;Song, Kyung-Sik
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.271.2-271.2
    • /
    • 2003
  • The ${\gamma}$- and ${\beta}$-secretase are one of the most important proteases, which cleave amyloid precursor protein (APP) into neurotoxic A${\beta}$ peptide in Azheimer's type dementia. In the course of screening for anti-dementia agents from natural products, the mycelial culture of mushroom Phellinus linteus showed potent inhibition againt ${\beta}$-secretase (BACE1). (omitted)

  • PDF

Effect of Gojineumja(Guzhenyinzi) on Neural Tissue Degeneration In Mouse Model of Alzheimer Disease (고진음자(固眞飮子)가 Alzheimer Disease 병태모델의 신경세포 손상에 미치는 영향)

  • Kim, Hyun-Joo;Jung, In-Chul;Lee, Sang-Ryong
    • Journal of Oriental Neuropsychiatry
    • /
    • v.20 no.2
    • /
    • pp.31-46
    • /
    • 2009
  • Objectives : This experiment was designed to investigate the effect of Gojineumja(Guzhenyinzi, GJEJ) on damaged neural tissue in cultured glial cells and in the mouse brain tissue. Methods : The effects of the GJEJ on activation of astrocytes and caspase 3-positive cell counts in cultured glial cells administered with ${\beta}$-amyloid peptide were investigated. The effects of the GJEJ on levels of glial fibrillary acidic protein(GFAP)-positive reactive astrocyets and caspase 3-positive cells in the hippocampal subfields in the rats administered with scopolamine were investigated. Results : 1. GJEJ reduced levels of activated astrocytes and caspase 3-positive cell counts in cultured glial cells administered with ${\beta}$-amyloid peptide. 2. GJEJ reduced levels of GFAP-positive reactive astrocyets and caspase 3-positive cells in the hippocampal subfields in the rats administered with scopolamine. Conclusions : The present data. suggest that GJEJ may have a protective function of neuronal and non-neuronal cells in damaged neural tissue caused by AD-like stimulations. Further studies on identification of effective molecular components of GJEJ and their interactions with damaged neural cells would be important for understanding molecular mechanism and may be further applicable for the development of therapeutic strategies.

  • PDF

A Review on the Correlation between the Pathology of Alzheimer's Disease and microRNA

  • Kim, Soo-Jung;Cho, Hyun-Jeong
    • Biomedical Science Letters
    • /
    • v.27 no.4
    • /
    • pp.208-215
    • /
    • 2021
  • The purpose of this study was to explain the pathology of Alzheimer's disease (AD) and to investigate the correlation between AD and microRNA. AD is the most common type of dementia, accounting for about 80% of all types of dementia, causing dysfunction in various daily activities such as memory loss, cognitive impairment, and behavioral impairment. The typical pathology of AD is explained by the accumulation of beta-amyloid peptide plaques and neurofibrillary tangles containing hyperphosphorylated tau protein. On the other hand, microRNA is small non-coding RNA 22~23 nucleotides in length that binds to the 3' untranslated region of messenger RNA to inhibit gene expression. Many reports explain that microRNAs found in circulating biofluids are abundant in the central nervous system, are involved in the pathogenic mechanism of AD, and act as important factors for early diagnosis and therapeutic agents of AD. Therefore, this paper aims to clarify the correlation between AD and microRNA. In this review, the basic mechanism of miRNAs is described, and the regulation of miRNAs in the pathological processes of AD are highlighted. Furthermore, we suggest that miRNA-based system in development of therapeutic and diagnostic agents of AD can be a promising tool.

Cognition Enhancing Effect of Muskmelon (Cucumis melo) Extracts on Scopolamine-induced Memory Impairment in Mice (참외추출물이 스코폴라민 유도 기억상실 흰쥐의 인지능 회복에 미치는 효과)

  • Park, Sang-Shin;Park, Na-Omi;Kang, Ju-Uk;Shin, Suk-Chul;Lee, Dong-Ung
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.688-691
    • /
    • 2009
  • The methanol extract of muskmelon (Cucumis melo) has been investigated for its cognition enhancing effects by evaluation of inhibitory activities on acetylcholinesterase, a degrading enzyme of acetylcholine, a brain neurotransmitter, and ${\beta}$- secretase, which forms the ${\beta}$-amyloid toxic protein from its precursor protein. A passive avoidance task, one of the animal model experiments for learning and memory, was also performed. As a result, the melon extract showed 15.8% and 35.3% inhibition on acetylcholinesterase and ${\beta}$-secretase, respectively, with a final concentration of 100 mg/ml. In the animal model test, melon extract significantly (p<0.05) lengthened the step-through latency time by 22.7% compared to the control group, suggesting that melon extract has, indeed, an effect on cognition enhancement.

Seed-Conjugated Polymer Bead for ${\beta}2$-Microglobulin Removal at Neutral pH

  • Kim, Mi-Ra;Kang, Sung-Soo;Myung, Eun-Kyung;Ahn, Min-Koo;Choi, Jeong-Hyun;Paik, Seung-R.;Lee, Yoon-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.960-965
    • /
    • 2009
  • ${\beta}2$-Microglobulin (${\beta}2m$) is known to be a major factor for dialysis-related amyloidosis. We have studied ${\beta}2m$ removal through an aggregation process, which was initiated by a ligand that could catch the ${\beta}2m$ monomer and promote its aggregation into fibril. As a ligand, we have prepared ${\beta}2m$ fibril fragments and used them as a seed. The seed was coupled to PEGylated-PS beads to remove the monomeric ${\beta}2m$ from solution. The ${\beta}2m$ seed-conjugated resin effectively adsorbed the ${\beta}2m$ monomers with a capacity of 3.6 mg/ml via promoting their aggregation into fibrils on the resin at pH 7.4.

Protective effects of kaempferol, quercetin, and its glycosides on amyloid beta-induced neurotoxicity in C6 glial cell (Kaempferol, quercetin 및 그 배당체의 amyloid beta 유도 신경독성에 대한 C6 신경교세포 보호 효과)

  • Kim, Ji Hyun;Kim, Hyun Young;Cho, Eun Ju
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.4
    • /
    • pp.327-332
    • /
    • 2019
  • Alzheimer's disease (AD) is a common neurodegenerative disease. Oxidative stress by amyloid beta peptide (Aβ) of neuronal cell is the most cause of AD. In the present study, protective effects of several flavonoids such as kaempferol (K), kaempferol-3-O-glucoside (KG), quercetin (Q) and quercetin-3-β-ᴅ-glucoside (QG) from Aβ25-35 were investigated using C6 glial cell. Treatment of Aβ25-35 to C6 glial cell showed decrease of cell viability, while treatment of flavonoids such as Q and QG increased cell viability. In addition, treatment of flavonoids declined reactive oxygen species (ROS) production compared with Aβ25-35-induced control. The ROS production was increased by treatment of Aβ25-35 to 133.39%, while KG and QG at concentration of 1 μM decreased ROS production to 107.44 and 113.10%, respectively. To study mechanisms of protective effect of these flavonoids against Aβ25-35, the protein expression related to inflammation under Aβ25-35-induced C6 glial cell was investigated. The results showed that C6 glial cell under Aβ25-35-induced oxidative stress up-regulated inflammation-related protein expressions. However, treatment of flavonoids led to reduction of protein expression such as inducible nitric oxide synthase, cyclooxygenase-2 and interleukin-1β. Especially, treatment of KG and QG decreased more effectively inflammation-related protein expression than its aglycones, K and Q. Therefore, the present results indicated that K, Q and its glycosides attenuated Aβ25-35-induced neuronal oxidative stress and inflammation.

Synthesis and Biological Evaluation of 3-Amino-4-aryl-piperidine Derivatives as BACE 1 Inhibitors

  • Lim, Hee-Jong;Jung, Myung-Hee;ChoiLee, Ihl-Young;Park, Woo-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1371-1376
    • /
    • 2006
  • BACE 1 ($\beta$-secretase), a membrane bound aspartic protease, is a key enzyme in the process of amyloid precursor protein (APP) into A$\beta$ peptide which is considered to play a causative role in Alzheimers Disease (AD). Here, we reported the synthesis and inhibitory activity of optically active 3-amino-4-aryl-piperidines.

MicroRNAs as Novel Biomarkers for the Diagnosis of Alzheimer's Disease and Modern Advancements in the Treatment

  • Gunasekaran, Tamil Iniyan;Ohn, Takbum
    • Biomedical Science Letters
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Alzheimer's disease is a common form of dementia occurring among the elderly population and can be identified by symptoms such as cognition impairments, memory loss and neuronal dysfunction. Alzheimer's disease was found to be caused by the deposition of $\beta$-amyloid plaques and neurofibrillary tangles. In addition, mutation in the APP (Amyloid precursor protein), Presenilin 1 (PSEN1) and Presenilin 2 (PSEN2) genes were also found to contribute to Alzheimer's disease. Since the potential conformational diagnosis of Alzheimer's disease requires histopathological tests on brain through autopsy, potential early diagnosis still remains challenging. In recent years, several researches have proposed the use of biomarkers for early diagnosis. In cerebrospinal fluid (CSF), $\beta$-amyloid(1-42), phosphorylated-tau and total tau were suggested to be effective biomarkers for Alzheimer's disease diagnosis. However, a single biomarker might not be sufficient for potential diagnosis of Alzheimer's disease. Thus, the use of RNA interference (RNAi) through microRNAs (miRNAs) has been proposed by several researchers for simultaneous analysis of several biomarkers using microarray technology. These miRNA based biomarkers can be analysed from both blood and CSF, but miRNAs from blood are advantageous over CSF as they are non-invasive and simple for collection. Moreover, the RNAi based therapeutics by siRNA (short interference RNA) or shRNA (short hairpin RNA) have also been proposed to be effective in the treatment of Alzheimer's disease. This review describes the promising application of RNAi technology in therapeutics and as a biomarker for both Alzheimer's disease diagnosis and treatment.

The Effects of Jeoreongchajeonja-tang(Zhulingjuqianzi-tang) on the βA and LPS Induced BV2 microglial cell (저령차전자탕(豬苓車前子湯)이 βA와 LPS로 처리된 BV2 microglial cell에 미치는 영향)

  • Ryu, Chang-Hee;Jung, In-Chul;Lee, Sang-Ryong
    • Journal of Oriental Neuropsychiatry
    • /
    • v.23 no.1
    • /
    • pp.145-159
    • /
    • 2012
  • Objectives : This research investigates the effect of the JCT extract regarding Alzheimer's disease. Methods : The effects of the JCT extract on IL-$1{\beta}$, IL-6, TNF-${\alpha}$, COX-2, NOS-II mRNA, APP mRNA, BACE mRNA, Nitric oxide(NO), and ${\beta}A$ protein production in the BV2 microglia cell lines treated with LPS and ${\beta}A$ were investigated. Results : 1. The JCT extract suppressed the expression of IL-$1{\beta}$, IL-6, TNF-${\alpha}$, COX-2, and NOS-II mRNA in BV2 microglial cell line treated with LPS and ${\beta}A$. 2. The JCT extract suppressed the expression of BACE and APP mRNA in BV2 microglial cell line treated with LPS and ${\beta}A$. 3. The JCT extract suppressed the expression of Nitric oxide(NO) in BV2 microglial cell line treated with LPS and ${\beta}A$. 4. The JCT extract suppressed the expression of ${\beta}A$ protein production in BV2 microglial cell line treated with LPS and ${\beta}A$. Conclusions : These results suggest that the JCT group may be effective for the treatment of Alzheimer's disease. Thus, JCT could be considered among the future therapeutic drugs indicated for the treatment of Alzheimer's disease.