• Title/Summary/Keyword: amplitude method

Search Result 2,237, Processing Time 0.032 seconds

Limit State Evaluation of Elbow Components Connected with Flexible Groove Joints (유동식 그루브 조인트로 연결된 엘보 요소의 한계상태 평가)

  • Sung-Wan Kim;Da-Woon Yun;Bub-Gyu Jeon;Dong-Uk Park;Sung-Jin Chang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.91-99
    • /
    • 2024
  • Piping systems are crucial facilities used in various industries, particularly in areas related to daily life and safety. Piping systems are fixed to the main structures of buildings and facilities but do not support external loads and serve as non-structural elements performing specific functions. Piping systems are affected by relative displacements owing to phase differences arising from different behaviors between two support points under seismic loads; this can cause damage owing to the displacement-dominant cyclic behavior. Fittings and joints in piping systems are representative elements that are vulnerable to seismic loads. To evaluate the seismic performance and limit states of fittings and joints in piping systems, a high-stroke actuator is required to simulate relative displacements. However, this is challenging because only few facilities can conduct these experiments. Therefore, element-level experiments are required to evaluate the seismic performance and limit states of piping systems connected by fittings and joints. This study proposed a method to evaluate the seismic performance of an elbow specimen that includes fittings and joints that are vulnerable to seismic loads in vertical piping systems. The elbow specimen was created by connecting straight pipes to both ends of a 90° pipe elbow using flexible groove joints. The seismic performance of the elbow specimen was evaluated using a cyclic loading protocol based on deformation angles. To determine the margin of the evaluated seismic performance, the limit states were assessed by applying cyclic loading with a constant amplitude.

The Individual Discrimination Location Tracking Technology for Multimodal Interaction at the Exhibition (전시 공간에서 다중 인터랙션을 위한 개인식별 위치 측위 기술 연구)

  • Jung, Hyun-Chul;Kim, Nam-Jin;Choi, Lee-Kwon
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.19-28
    • /
    • 2012
  • After the internet era, we are moving to the ubiquitous society. Nowadays the people are interested in the multimodal interaction technology, which enables audience to naturally interact with the computing environment at the exhibitions such as gallery, museum, and park. Also, there are other attempts to provide additional service based on the location information of the audience, or to improve and deploy interaction between subjects and audience by analyzing the using pattern of the people. In order to provide multimodal interaction service to the audience at the exhibition, it is important to distinguish the individuals and trace their location and route. For the location tracking on the outside, GPS is widely used nowadays. GPS is able to get the real time location of the subjects moving fast, so this is one of the important technologies in the field requiring location tracking service. However, as GPS uses the location tracking method using satellites, the service cannot be used on the inside, because it cannot catch the satellite signal. For this reason, the studies about inside location tracking are going on using very short range communication service such as ZigBee, UWB, RFID, as well as using mobile communication network and wireless lan service. However these technologies have shortcomings in that the audience needs to use additional sensor device and it becomes difficult and expensive as the density of the target area gets higher. In addition, the usual exhibition environment has many obstacles for the network, which makes the performance of the system to fall. Above all these things, the biggest problem is that the interaction method using the devices based on the old technologies cannot provide natural service to the users. Plus the system uses sensor recognition method, so multiple users should equip the devices. Therefore, there is the limitation in the number of the users that can use the system simultaneously. In order to make up for these shortcomings, in this study we suggest a technology that gets the exact location information of the users through the location mapping technology using Wi-Fi and 3d camera of the smartphones. We applied the signal amplitude of access point using wireless lan, to develop inside location tracking system with lower price. AP is cheaper than other devices used in other tracking techniques, and by installing the software to the user's mobile device it can be directly used as the tracking system device. We used the Microsoft Kinect sensor for the 3D Camera. Kinect is equippedwith the function discriminating the depth and human information inside the shooting area. Therefore it is appropriate to extract user's body, vector, and acceleration information with low price. We confirm the location of the audience using the cell ID obtained from the Wi-Fi signal. By using smartphones as the basic device for the location service, we solve the problems of additional tagging device and provide environment that multiple users can get the interaction service simultaneously. 3d cameras located at each cell areas get the exact location and status information of the users. The 3d cameras are connected to the Camera Client, calculate the mapping information aligned to each cells, get the exact information of the users, and get the status and pattern information of the audience. The location mapping technique of Camera Client decreases the error rate that occurs on the inside location service, increases accuracy of individual discrimination in the area through the individual discrimination based on body information, and establishes the foundation of the multimodal interaction technology at the exhibition. Calculated data and information enables the users to get the appropriate interaction service through the main server.

PERIODIC AND CORRELATION ANALYSES BETWEEN WATER TEMPERATURE AND AIR TEMPERATURE IN THE KOREAN WATERS (韓國 沿岸 水溫 및 氣溫의 週期分析과 相關分析)

  • Kim, Bok-Kee
    • 한국해양학회지
    • /
    • v.18 no.1
    • /
    • pp.55-63
    • /
    • 1983
  • The study on the periodic and correlation analysis between water temperature and air temperature has beenconducted by oceanographic data obtained from 1923 to 1979 (For 16-51 years) in 6 ststions in the Korean Waters. The periodic and correlation analyses has been examined by method of he Schuster's and the quadratic formula of least squares method, respectively. The results pbtained from the study are as follows; 1. Periodic analysis 1) The yearly difference between max. and mini. fo surface water temperature was 12.77-17.99$^{\circ}C$ (computed value : 11.67-16.64$^{\circ}C$) in offshore waters, and was 15.72-26.33$^{\circ}C$ (computed value : 15.13-25.29$^{\circ}C$) in inshore waters, and that of air temperature was 21.71-28.60$^{\circ}C$ (computed value : 10.50-27.22$^{\circ}C$). 2) The yearly mean of water temperature by station was 11.25-18.78$^{\circ}C$, and that of air temperature was 11.39-16.16$^{\circ}C$. 3) The annual compnent amplitrde of water temperature was 5.72-12.54$^{\circ}C$, and that of air temperature was 10.04-13.49$^{\circ}C$. 4) The semi-annual component amplitude of water temperature was 0.83-1.30$^{\circ}C$, and that of air temperature was 0.72-1.26$^{\circ}C$. 5) The annual component phase of water temperature was 215-228$^{\circ}C$ (max. temperature shall be in the first and in the middle ten days of August) in inshore waters and 138-244$^{\circ}C$ (max. temperature shall be in the first and in the middle ten days of August) in offshore waters, and that of air temperarture was 212-221$^{\circ}C$ (max. temperature shall be in the first and in the middle ten days of July and in the first tin days of August). 6) The semi-annual component phase of water temperature was 87-110$^{\circ}C$ in offshore waters, and 167-212$^{\circ}C$ in inshore waters, and that of air temperature was 156-189$^{\circ}C$. 2. Correlation analyses of water temperature and air temperature before one month. 1) When the water temperature is in rising time, the quadratic constant of correlation formual was the gradual inreasing type ( constant; 0.010-0.026) in offshore waters, and the gradual decreasing or proportional type (constant; -0.020-0.001) in inshore waters. 2) when the water temperature is in descending time, the quadratic constant of correlation formula was the gradual increasing type (constant: 0.012-0.021) 3) the determination coefficient was 0.964-0.992 at rising time and 0.982-0.999 at descending time of water temperature.

  • PDF

Grand Circulation Process of Beach Cusp and its Seasonal Variation at the Mang-Bang Beach from the Perspective of Trapped Mode Edge Waves as the Driving Mechanism of Beach Cusp Formation (맹방해안에서 관측되는 Beach Cusp의 일 년에 걸친 대순환 과정과 계절별 특성 - 여러 생성기작 중 포획모드 Edge Waves를 중심으로)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.265-277
    • /
    • 2019
  • Using the measured data of waves and shore-line, we reviewed the grand circulation process and seasonal variation of beach cusp at the Mang-Bang beach from the perspective of trapped mode Edge waves known as the driving mechanism of beach cusp. In order to track the temporal and spatial variation trends of beach cusp, we quantify the beach cusp in terms of its wave length and amplitude detected by threshold crossing method. In doing so, we also utilize the spectral analysis method and its associated spectral mean sand wave number. From repeated period of convergence and ensuing splitting of sand waves detected from the yearly time series of spectral mean sand wave number of beach cusp, it is shown that the grand circulation process of beach cusp at Mang-Bang beach are occurring twice from 2017. 4. 26 to 2018. 4. 20. For the case of beach area, it increased by $14,142m^2$ during this period, and the shore-line advanced by 18 m at the northen and southern parts of the Mang-Bang beach whereas the shore-line advanced by 2.4 m at the central parts of Mang-Bang beach. It is also worthy of note that the beach area rapidly increased by $30,345m^2$ from 2017.11.26. to 2017.12.22. which can be attributed to the nature of coming waves. During this period, mild swells of long period were prevailing, and their angle of attack were next to zero. These characteristics of waves imply that the main transport mode of sediment would be the cross-shore. Considering the facts that self-healing capacity of natural beaches is realized via the cross-shore sediment once temporarily eroded. it can be easily deduced that the sediment carried by the boundary layer streaming toward the shore under mild swells which normally incident toward the Mang-Bang beach makes the beach area rapidly increase from 2017.11.26. to 2017.12.22.

Preliminary Study on the Development of a Performance Based Design Platform of Vertical Breakwater against Seismic Activity - Centering on the Weakened Shear Modulus of Soil as Shear Waves Go On (직립식 방파제 성능기반 내진 설계 Platform 개발을 위한 기초연구 - 전단파 횟수 누적에 따른 지반 강도 감소를 중심으로)

  • Choi, Jin Gyu;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.306-318
    • /
    • 2018
  • In order to evaluate the seismic capacity of massive vertical type breakwaters which have intensively been deployed along the coast of South Korea over the last two decades, we carry out the preliminary numerical simulation against the PoHang, GyeongJu, Hachinohe 1, Hachinohe 2, Ofunato, and artificial seismic waves based on the measured time series of ground acceleration. Numerical result shows that significant sliding can be resulted in once non-negligible portion of seismic energy is shifted toward the longer period during its propagation process toward the ground surface in a form of shear wave. It is well known that during these propagation process, shear waves due to the seismic activity would be amplified, and non-negligible portion of seismic energy be shifted toward the longer period. Among these, the shift of seismic energy toward the longer period is induced by the viscosity and internal friction intrinsic in the soil. On the other hand, the amplification of shear waves can be attributed to the fact that the shear modulus is getting smaller toward the ground surface following the descending effective stress toward the ground surface. And the weakened intensity of soil as the number of attacking shear waves are accumulated can also contribute these phenomenon (Das, 1993). In this rationale, we constitute the numerical model using the model by Hardin and Drnevich (1972) for the weakened shear modulus as shear waves go on, and shear wave equation, in the numerical integration of which $Newmark-{\beta}$ method and Modified Newton-Raphson method are evoked to take nonlinear stress-strain relationship into account. It is shown that the numerical model proposed in this study could duplicate the well known features of seismic shear waves such as that a great deal of probability mass is shifted toward the larger amplitude and longer period when shear waves propagate toward the ground surface.

Development of New 4D Phantom Model in Respiratory Gated Volumetric Modulated Arc Therapy for Lung SBRT (폐암 SBRT에서 호흡동조 VMAT의 정확성 분석을 위한 새로운 4D 팬텀 모델 개발)

  • Yoon, KyoungJun;Kwak, JungWon;Cho, ByungChul;Song, SiYeol;Lee, SangWook;Ahn, SeungDo;Nam, SangHee
    • Progress in Medical Physics
    • /
    • v.25 no.2
    • /
    • pp.100-109
    • /
    • 2014
  • In stereotactic body radiotherapy (SBRT), the accurate location of treatment sites should be guaranteed from the respiratory motions of patients. Lots of studies on this topic have been conducted. In this letter, a new verification method simulating the real respiratory motion of heterogenous treatment regions was proposed to investigate the accuracy of lung SBRT for Volumetric Modulated Arc Therapy. Based on the CT images of lung cancer patients, lung phantoms were fabricated to equip in $QUASAR^{TM}$ respiratory moving phantom using 3D printer. The phantom was bisected in order to measure 2D dose distributions by the insertion of EBT3 film. To ensure the dose calculation accuracy in heterogeneous condition, The homogeneous plastic phantom were also utilized. Two dose algorithms; Analytical Anisotropic Algorithm (AAA) and AcurosXB (AXB) were applied in plan dose calculation processes. In order to evaluate the accuracy of treatments under respiratory motion, we analyzed the gamma index between the plan dose and film dose measured under various moving conditions; static and moving target with or without gating. The CT number of GTV region was 78 HU for real patient and 92 HU for the homemade lung phantom. The gamma pass rates with 3%/3 mm criteria between the plan dose calculated by AAA algorithm and the film doses measured in heterogeneous lung phantom under gated and no gated beam delivery with respiratory motion were 88% and 78%. In static case, 95% of gamma pass rate was presented. In the all cases of homogeneous phantom, the gamma pass rates were more than 99%. Applied AcurosXB algorithm, for heterogeneous phantom, more than 98% and for homogeneous phantom, more than 99% of gamma pass rates were achieved. Since the respiratory amplitude was relatively small and the breath pattern had the longer exhale phase than inhale, the gamma pass rates in 3%/3 mm criteria didn't make any significant difference for various motion conditions. In this study, the new phantom model of 4D dose distribution verification using patient-specific lung phantoms moving in real breathing patterns was successfully implemented. It was also evaluated that the model provides the capability to verify dose distributions delivered in the more realistic condition and also the accuracy of dose calculation.

Cold Pressor Response to Seasonal Variation in Winter and Summer (국소한냉자극이 전신 및 국소혈액순환에 미치는 영향 -제 2 보 : 동계 및 하계의 계절변화에 따른 한냉반응-)

  • Park, Won-Gyun;Chae, E-Up
    • The Korean Journal of Physiology
    • /
    • v.17 no.2
    • /
    • pp.93-101
    • /
    • 1983
  • A possibility whether the appearance of adaptation to cold climate during winter could occur or not in Taegu area was evaluated by comparing the data obtained in winter with that obtained by the same method in summer. Circulatory response was induced by the immersion of one hand in the cold water. The systemic and local responses in the blood circulation from the immersed hand and the unimmersed opposite hand were observed simultaneously. In addition Galvanic skin resistance(GSR) that is influenced by the activity of autonomic nervous system and the vascular tonicity was recorded. The experiment was performed by examining sixty healthy college students in winter and fifty in summer, whose mean age was 21.0, mean weight $60.6{\pm}0.90\;kg(male)$ and $48.3{\pm}0.98\;kg(female)$. The cold stimulus was applied by immersing the left hand into the cold water of $5^{\circ}C$ for 3 minutes, and the response was observed on immersed left hand and unimmersed right hand simultaneously. The observation was made through determining mean blood pressure, heart rate, amplitude of photoelectric capillary pulse (APCP) and GSR. The results obtained are as follows: The mean blood pressure was elevated during the cold stimulation. The increase of blood pressure in summer was more remarkable than in winter. At the recovery period the blood pressure was decreased to the control level in winter but the decrease below the control level was observed in summer. The increase of heart rate in summer was more remarkable than in winter during the cold stimulation. At the recovery period heart rate in both winter and summer was decreased below the control level. During the cold stimulation the APCP was decreased on both hands in winter. However it was more prominent on left hand indicating additional direct cold effect on immersed hand. In summer, the decrease of APCP during immersion was less remarkable than that in winter, but the regain of APCP was faster than that in winter at the recovery period. And the prompt increase of APCP over the control level has been obtained at the 3 minutes of the recovery period. The GSR was remarkably increased on immersed hand but slightly decreased on unimmersed opposite hand during the cold stimulation. Thus the finding on immersed hand indicates that the local direct effect of cold water is more prominent than the systemic effect, where as the finding on unimmersed hand indicates that the circulatory response to painful stress elicited by the cold stimulation is more prominent than cold temperature itself. In summary, it seems that the systemic circulatory response to the local cold stimulation of the one hand is arised more from the secondary elicited pain sensation and less from the low water temperature. On the contrary to the report of Kim et $al^{39)}$, the adaptation phenomena in blood pressure to the relatively mild cold climate in winter was not observed in this study. The difference of circulatory response observed in this study between winter and summer may be due to the difference of the magnitude of subjective sensation of the cold water stimulation by the seasonal changes in air temperature.

  • PDF

A Study on Developing Sensibility Model for Visual Display (시각 디스플레이에서의 감성 모형 개발 -움직임과 색을 중심으로-)

  • 임은영;조경자;한광희
    • Korean Journal of Cognitive Science
    • /
    • v.15 no.2
    • /
    • pp.1-15
    • /
    • 2004
  • The structure of sensibility from motion was developed for the purpose of understanding relationship between sensibilities and physical factors to apply it to dynamic visual display. Seventy adjectives were collected by assessing adequacy to express sensibilities from motion and reporting sensibilities recalled from dynamic displays with achromatic color. Various motion displays with a moving single dot were rated according to the degree of sensibility corresponding to each adjective, on the basis of the Semantic Differential (SD) method. The results of assessment were analyzed by means of the factor analysis to reduce 70 words into 19 fundamental sensibilities from motion. The Multidimensional Scaling (MDS) technique constructed the sensibility space in motion, in which 19 sensibilities were scattered with two dimensions, active-passive and bright-dark Motion types systemically varied in kinematic factors were placed on the two-dimensional space of motion sensibility, in order to analyze important variables affecting sensibility from motion. Patterns of placement indicate that speed and both of cycle and amplitude in trajectories tend to partially determine sensibility. Although color and motion affected sensibility according to the in dimensions, it seemed that combination of motion and color made each have dominant effect individually in a certain sensibility dimension, motion to active-passive and color to bright-dark.

  • PDF

Prediction of Target Motion Using Neural Network for 4-dimensional Radiation Therapy (신경회로망을 이용한 4차원 방사선치료에서의 조사 표적 움직임 예측)

  • Lee, Sang-Kyung;Kim, Yong-Nam;Park, Kyung-Ran;Jeong, Kyeong-Keun;Lee, Chang-Geol;Lee, Ik-Jae;Seong, Jin-Sil;Choi, Won-Hoon;Chung, Yoon-Sun;Park, Sung-Ho
    • Progress in Medical Physics
    • /
    • v.20 no.3
    • /
    • pp.132-138
    • /
    • 2009
  • Studies on target motion in 4-dimensional radiotherapy are being world-widely conducted to enhance treatment record and protection of normal organs. Prediction of tumor motion might be very useful and/or essential for especially free-breathing system during radiation delivery such as respiratory gating system and tumor tracking system. Neural network is powerful to express a time series with nonlinearity because its prediction algorithm is not governed by statistic formula but finds a rule of data expression. This study intended to assess applicability of neural network method to predict tumor motion in 4-dimensional radiotherapy. Scaled Conjugate Gradient algorithm was employed as a learning algorithm. Considering reparation data for 10 patients, prediction by the neural network algorithms was compared with the measurement by the real-time position management (RPM) system. The results showed that the neural network algorithm has the excellent accuracy of maximum absolute error smaller than 3 mm, except for the cases in which the maximum amplitude of respiration is over the range of respiration used in the learning process of neural network. It indicates the insufficient learning of the neural network for extrapolation. The problem could be solved by acquiring a full range of respiration before learning procedure. Further works are programmed to verify a feasibility of practical application for 4-dimensional treatment system, including prediction performance according to various system latency and irregular patterns of respiration.

  • PDF

Variations in Nutrients & CO2 Uptake Rates and Photosynthetic Characteristics of Saccharina japonica from the South Coast of Korea (다시마(Saccharina japonica)의 생장에 따른 영양염 및 CO2 흡수율과 광합성 특성 변화)

  • Hwang, Jae-Ran;Shim, Jeong-Hee;Kim, Jeong-Bae;Kim, Sook-Yang;Lee, Yong-Hwa
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.4
    • /
    • pp.196-205
    • /
    • 2011
  • To investigate the contribution of macroalgae to biogeochemical nutrients and carbon cycles, we measured the uptake rates of nutrients and $CO_2$ and characteristics of fluorescence of Saccharina japonica (Laminaria japonica Areschoug) using an incubation method in an acrylic chamber. From January to May 2011, S.japonica was sampled at Ilkwang, one of well-known macroalgae culture sites around Korea and ranged 46~288 cm long and 4.8~22.0 cm wide of whole thallus. The production rate of dissolved oxygen by S. japonica (n=25) was about $6.9{\pm}5.8{\mu}mol\;g^{-1}$ fresh weight(FW) $h^{-1}$. The uptake rate of total dissolved inorganic carbon ($TCO_2$), calculated by total alkalinity and pH, was $8.9{\pm}7.9{\mu}mol\;g^{-1}\;FW\;h^{-1}$. Mean nutrients uptake were $175.6{\pm}161.1\;nmol\;N\;g^{-1}\;FW\;h^{-1}$ and $12.7{\pm}10.1\;nmol\;P\;g^{-1}\;FW\;h^{-1}$. There were logarithmic relationships between thallus length and uptake rates of nutrients and $CO_2$, which suggested that younger specimens (<100-150 cm) were much more efficient at nutrients and $CO_2$ uptake than old specimens > 150 cm. There was a positive linear correlation ($r^2$=9.4) existed between the dissolved oxygen production rate and the $TCO_2$ uptake rate, suggesting that these two factors may serve as good indicators of S. japonica photosynthesis. There was also positive linear relationship between maximal quantum yield ($F_v/F_m$) and production/uptake rates of dissolved oxygen, $TCO_2$ and phosphate, suggested that $F_v/F_m$ could be used as a good indicator of photosynthetic ability and $TCO_2$ consumption of macroalgae. Maximum relative electron transport rate ($rETR_{max}$) of S. japonica increased as thallus grew and was high in distal part of thallus which may be resulted from the increase of photosynthetic cell density per area. The annual $TCO_2$ uptake by S. japonica in Gijang area was estimated about $1.0\sim1.7{\times}10^3C$ ton, which was about 0.02-0.03% of carbon dioxide emission in Busan City. Thus, more research should be focused on macroalgae-based biogeochemical cycles to evaluate the roles and contributions of macroalgae to the global carbon cycle.