• Title/Summary/Keyword: amplification factors

Search Result 165, Processing Time 0.028 seconds

Numerical analysis for dynamic characteristics of bridge considering next-generation high-speed train

  • Soon T. Oh;Dong J. Lee;Seong T. Yi;Byeong J. Jeong
    • Advances in Computational Design
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • To consider the effects of the increasing speed of next-generation high-speed trains, the existing traffic safety code for railway bridges needs to be improved. This study suggests a numerical method of evaluating the new effects of this increasing speed on railway bridges. A prestressed concrete (PSC) box bridge with a 40 m span length on the Gyeongbu track sector is selected as a representative example of high-speed railway bridges in Korea. Numerical models considering the inertial mass forces of a 38-degree-of-freedom train and the interaction forces with the bridge as well as track irregularities are presented in detail. The vertical deflections and accelerations of the deck are calculated and compared to find the new effects on the bridge arising with increasing speed under simply and continuously supported boundary conditions. The ratios between the static and dynamic responses are calculated as the dynamic amplification factors (DAFs) under different running speeds to evaluate the traffic safety. The maximum deflection and acceleration caused by the running speed are indicated, and regression equations for predicting these quantities based on the speed are also proposed.

Effects on amplification of strong ground motion due to deep soils

  • Jakka, Ravi S.;Hussain, Md.;Sharma, M.L.
    • Geomechanics and Engineering
    • /
    • v.8 no.5
    • /
    • pp.663-674
    • /
    • 2015
  • Many seismically vulnerable regions in India and worldwide are located on deep soil deposits which extend to several hundred meters of depth. It has been well recognized that the earthquake shaking is altered by geological conditions at the location of building. As seismic waves propagates through uppermost layers of soil and rock, these layers serve as filter and they can increase the duration and amplitude of earthquake motion within narrow frequency bands. The amplification of these waves is largely controlled by mechanical properties of these layers, which are function of their stiffness and damping. Stiffness and damping are further influenced by soil type and thickness. In the current study, an attempt has been made to study the seismic site response of deep soils. Three hypothetical homogeneous soil models (e.g., soft soil, medium soil and hard soil) lying on bedrock are considered. Depth of half space is varied from 30 m to 2,000 m in this study. Controlled synthetic motions are used as input base motion. One dimensional equivalent linear ground response analyses are carried out using a computer package DEEPSOIL. Conventional approach of analysing up to 30 m depth has been found to be inadequate for deep soil sites. PGA values are observed to be higher for deeper soil profiles as compared to shallow soil profiles indicating that deeper soil profiles are more prone to liquefaction and other related seismic hazards under earthquake ground shaking. The study recommends to deal the deeper soil sections more carefully for estimating the amplification factors for seismic hazard assessment at the surface.

Evaluation of the Second Order Analysis of Unbraced Frame by using load amplification factor (하중증폭계수를 적용한 비가새 골조 2차 해석 평가)

  • Kim, Hee Dong;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.627-636
    • /
    • 2009
  • The purpose of this study was to evaluate the validity of the second-order analysis using the load amplification factor suggested by design codes. For this purpose, the first-order analysis with the B1 and B2 factors suggested by KBC 2005 and the direct analysis with the load amplification factor suggested by KBC 2009 (draft) were performed for three-story -one-bay and five-story-three-bay unbraced steel frames. The results of the analyses were compared with the results of the second-order inelastic analysis to evaluate the validity of the suggested methods. The main parameters of the analysis were the scale of the frame, the axial load ratio of the column, and the methods of analysis. The research results showedthat the method suggested by KBC 2005 does not properly consider the second-order effect under the high axial load ratio, but the direct analysis method suggested by KBC 2009 (draft) properly estimates the second-order effect without any serious problem.

The Effect of Turbulent Premixed Flame on the Wave Scattering (난류예혼합화염이 음파의 산란에 미치는 영향에 관한 연구)

  • Cho, Ju-Hyeong;Baek, Seung-Wook
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • Analytical investigation of acoustic wave scattering from turbulent premixed flames was conducted to evaluate the acoustic energy amplification/damping. Such acoustic energy change is attributed to the acoustic velocity jump due to flame's heat release. Small perturbation method up to second order and stochastic analysis were utilized to formulate net acoustic energy and the energy transfer from coherent to incoherent energy. Randomly wrinkled flame surface is responsible for the energy transfer from coherent to incoherent field. Nondimensional parameters that govern net acoustic energy were determined: rms height and correlation length of flame front, incident wave frequency, incidence angle, and temperature ratio. The dependence of net acoustic energy upon these parameters is illustrated by numerical simulations in case of Gaussian statistics of flame front. Total net energy was amplified and the major factors that affect such energy amplification are incidence angle and temperature ratio. Coherent (incoherent) energy is damped (amplified) with rms height and correlation length of flame front.

  • PDF

Combined Wave Reflection and Diffraction near the Upright Breakwater (직립 방파제 주위에서 파랑의 반사 및 회절의 혼합)

  • Shin, Seung Ho;Gug, Seung Gi;Yeom, Won Gi;Lee, Joong Woo
    • Journal of Korean Port Research
    • /
    • v.5 no.1
    • /
    • pp.71-81
    • /
    • 1991
  • This study deals with the analytical and numerical solution for the combined wave reflection and diffraction near the impermeable rigid upright breakwater, subject to the excitation of a plane simple harmonic wave coming from infinity. Three cases are presented : a) the analytical solution near a thin semi-infinite breakwater, b) the analytical solution near the semi-infinite breakwaters of arbitrary edge angles, $30^{\circ},\;45^{\circ},\;and\;90^{\circ}$, c) the numerical solution near a detached thin breakwater the results are presented in amplification factor and wave height diagrams. Moreover, the amplification factors near the structure(2 wavelength before and behind the structure) are compared for the given cases. A finite difference technique for the numerical solution was applied to the integral equation obtained for the wave potential.

  • PDF

Aeroelastic modeling to investigate the wind-induced response of a multi-span transmission lines system

  • Azzi, Ziad;Elawady, Amal;Irwin, Peter;Chowdhury, Arindam Gan;Shdid, Caesar Abi
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.231-257
    • /
    • 2022
  • Transmission lines systems are important components of the electrical power infrastructure. However, these systems are vulnerable to damage from high wind events such as hurricanes. This study presents the results from a 1:50 scale aeroelastic model of a multi-span transmission lines system subjected to simulated hurricane winds. The transmission lines system considered in this study consists of three lattice towers, four spans of conductors and two end-frames. The aeroelastic tests were conducted at the NSF NHERI Wall of Wind Experimental Facility (WOW EF) at the Florida International University (FIU). A horizontal distortion scaling technique was used in order to fit the entire model on the WOW turntable. The system was tested at various wind speeds ranging from 35 m/s to 78 m/s (equivalent full-scale speeds) for varying wind directions. A system identification (SID) technique was used to evaluate experimental-based along-wind aerodynamic damping coefficients and compare with their theoretical counterparts. Comparisons were done for two aeroelastic models: (i) a self-supported lattice tower, and (ii) a multi-span transmission lines system. A buffeting analysis was conducted to estimate the response of the conductors and compare it to measured experimental values. The responses of the single lattice tower and the multi-span transmission lines system were compared. The coupling effects seem to drastically change the aerodynamic damping of the system, compared to the single lattice tower case. The estimation of the drag forces on the conductors are in good agreement with their experimental counterparts. The incorporation of the change in turbulence intensity along the height of the towers appears to better estimate the response of the transmission tower, in comparison with previous methods which assumed constant turbulence intensity. Dynamic amplification factors and gust effect factors were computed, and comparisons were made with code specific values. The resonance contribution is shown to reach a maximum of 18% and 30% of the peak response of the stand-alone tower and entire system, respectively.

Uniform Hazard Spectrum Evaluation Method for Nuclear Power Plants on Soil Sites based on the Hazard Spectra of Bedrock Sites (암반 지반의 재해도 스펙트럼에 기반한 토사지반 원전 부지의 등재해도 스펙트럼 평가 기법)

  • Hahm, Dae-Gi;Seo, Jeong-Moon;Choi, In-Kil;Rhee, Hyun-Me
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.35-42
    • /
    • 2012
  • We propose a probabilistic method to evaluate the uniform hazard spectra (UHS) of the soil of nuclear power plant(NPP) sites corresponding to that of a bedrock site. To do this, amplification factors on the surface of soil sites were estimated through site response analysis while considering the uncertainty in the earthquake ground motion and soil deposit characteristics. The amplification factors were calculated by regression analysis with spectral acceleration because these two factors are mostly correlated. The proposed method was applied to the evaluation of UHS for the KNGR (Korean Next Generation Reactor) and the APR1400 (Advanced Power Reactor 1400) nuclear power plant sites of B1, B4, C1 and C3. The most dominant frequency range with respect to the annual frequency of earthquakes was evaluated from the UHS analysis. It can be expected that the proposed method will improve the results of integrated risk assessments of NPPs rationally. We expect also that the proposed method will be applied to the evaluation of the UHS and of many other kinds of soil sites.

Earthquake Engineering Bedrock Based on the Shear Wave Velocities of Rock Strata in Korea (국내 암반지층의 전단파속도에 근거한 지진공학적 기반암 결정)

  • Sun, Chang-Guk
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.273-281
    • /
    • 2014
  • In most current seismic design codes, design earthquake ground motions are defined by a reference spectrum, based on bedrock and site amplification factors that quantify the geotechnical dynamic conditions. Earthquake engineering bedrock is the fundamental geotechnical formation where the seismic waves are attenuated without amplification. To better define bedrock in an earthquake engineering context, shear wave velocity ($V_S$ ) data obtained from in-situ seismic tests were examined for several rock strata in Korea; these data were categorized by borehole drilling investigations. The $V_S$ values for most soft rock data in Korea are > 750 m/s, which is the threshold $V_S$ value for identifying engineering bedrock from a strong motion station. Conversely, VS values are < 750 m/s for 60% of $V_S$ data in weathered rock in Korea. Thus, the soft (or harder) rock strata below the weathered rock layer in Korea can be regarded as earthquake engineering bedrock.

Chromogenic In Situ Hybridisation Test for Breast Cancer Patients with Equivocal IHC Results - a Study from Iran

  • Mehrazma, Mitra;Kalantari, Elham;Rezvani, Hamid;Bahar, Babak;Basi, Ali;Razavi, Seyed Mohsen;Rakhshani, Nasser
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7695-7700
    • /
    • 2015
  • Background: HER2/neu overexpression on cell membranes of breast cancer cells is due to HER2/neu gene amplification and it is important to identify potential candidates for anti HER2 therapy with trastuzumab. IHC, FISH and CISH are standard FDA approved assays currently used to determine HER2 status in routine practice. The aim of this study was to determine HER2 gene amplification, using the CISH method in breast carcinoma samples which had IHC +2 reactions. Materials and Methods: This study was conducted from 2008-2010 using 334 consecutive breast carcinoma samples referred from local laboratories to Mehr Hospital. CISH assays were performed for all cases, and IHC tests were also done for determining efficacy and accuracy of local labs. HER2 status in local IHC tests was compared with central IHC and CISH results. Results: Of 334 breast cancer patients, 16 were negative for HER2 IHC (0, +1), 201 cases were equivocal (+2), and 31 positive (+3). Of 334 referral cases, 88 were CISH positive (26.3%) and 246 were CISH negative (73.7%). Of 201 IHC +2 cases, HER2 gene amplification was observed in 42 cases (kappa: 0.42). A 29.9% concordance was found between local IHC and central IHC. Sensitivity and specificity of local IHC were 90% and 53.8%, respectively. Conclusions: Low accuracy of IHC results in local labs was associated with the following factors: using former FDA-approved criteria for HER2 interpretation, utilizing non-validated kits, and lack of any quality assurance program. Therefore, following the new 2014 ASCO/CAP guideline and comprehensive quality assurance should be implemented to ensure accuracy of HER2 testing.

Rapid Detection of Clostridium tetani by Recombinase Polymerase Amplification Using an Exo Probe

  • Guo, Mingjing;Feng, Pan;Zhang, Liqun;Feng, Chunfeng;Fu, Jie;Pu, Xiaoyun;Liu, Fei
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.91-98
    • /
    • 2022
  • Tetanus is a potentially fatal public health illness resulted from the neurotoxins generated by Clostridium tetani. C. tetani is not easily culturable and culturing the relevant bacteria from infected wounds has rarely been useful in diagnosis; PCR-based assays can only be conducted at highly sophisticated laboratories. Therefore, a real-time recombinase polymerase amplification assay (Exo-RPA) was constructed to identify the fragments of the neurotoxin gene of C. tetani. Primers and the exo probe targeting the conserved region were designed, and the resulting amplicons could be detected in less than 20 min, with a detection limit of 20 copies/reaction. The RPA assay displayed good selectivity, and there were no cross-reactions with other infectious bacteria common in penetrating wounds. Tests of target-spiked serum and pus extract revealed that RPA is robust to interfering factors and has great potential for further development for biological sample analysis. This method has been confirmed to be reliable for discriminating between toxic and nontoxic C. tetani strains. The RPA assay dramatically improves the diagnostic efficacy with simplified device architecture and is a promising alternative to real-time PCR for tetanus detection.