• Title/Summary/Keyword: amphibolite

Search Result 84, Processing Time 0.02 seconds

Talc Mineralization in the Middle Ogcheon Metamorphic Belt (II) : Poongjeon Talc Deposit (중부옥천변성대의 활석광화작용에 관한 연구 (II) : 풍전활석광상을 중심으로)

  • Park, Hee-In;Lee, In Sung;Hur, Soon Do;Shin, Dong Bok
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.543-551
    • /
    • 1997
  • Poongjeon talc deposits is emplaced in dolomite and dolomitic limestone of the Cambro-Ordovician Samtaesan Formation. Ore in Poongjeon is low grade talc and the deposit has been known as the contact metasomatic or hydrothermal replacement type related to the intrusion of late Cretaceous granite in this area. X-ray diffraction, electron microprobe analysis, fluid inclusion and stable isotope analysis were utilized to examine the mineralogy of the ore and the origin of the ore fluid. The ore from Poongjeon mine mainly consists of talc and tremolite with minor amount of illite, vermiculite, smectite, and chlorite-vermiculite mixed layer. Occurrence of ore body indicates that the talc-tremolite ore was formed through the replacement by the $SiO_2$-rich hydrothermal fluid along the bedding and dike boundaries, or contact of amphibolite and basic dike with carbonate rocks. The temperature and pressure of the ore forming fluids at the time of the talc mineralization were estimated as $350^{\circ}C$ and 400 bar, respectively, based on the heating and freezing data of the fluid inclusions in quartz from talc-tremolite veins. During the talc-tremolite formation, fluids were divided into $CO_2$-enriched fluid and $CO_2$-poor fluid from $CO_2$ immiscibility (or effervescence). Oxygen isotope values (${\delta}^{18}O$) of the talc-tremolite fall within a range between 12.2 and 12.9‰. Hydrogen isotope values(${\delta}D$) of the ore range from -60 to -85‰ and $H_2O$ contents range from 2.0 to 3.4 wt.%. ${\delta}^{18}O$ and ${\delta}D$ values of talc ore indicate that the hydrothermal fluid involved in talc-tremolite formation was of igneous origin. Oxygen and hydrogen isotopic exchange between talc ore and the surface water was negligible after talc-tremolite ore formation.

  • PDF

K-Ar Ages on Biotites of the Proterozoic Buncheon and Hongjesa Granitic Rocks in the northeastern Part of the Sobaegsan Massif (선(先)캠브리아기(紀) 분천(汾川) 및 홍제사화강암류(홍제사화강암류)의 흑운모(黑雲母)에 대(對)한 K-Ar 연대측정(年代測定))

  • Hong, Young Kook;Choi, Tae Yun
    • Economic and Environmental Geology
    • /
    • v.19 no.2
    • /
    • pp.147-151
    • /
    • 1986
  • K-Ar ages on biotites have been determined from the Proterozoic Buncheon and Hongjesa granitic rocks in comparison with the Rb-Sr whole-rock ages to investigate the ages of metamorphic events. The Rb-Sr whole-rock ages determinations on the Buncheon and Hongjesa granitoid rocks were previously reported as 2,100Ma and 1,700Ma, respectively. K-Ar ages on biotites separated from the studied rock have revealed three different age groups such as 1) 1,200~1,300Ma, 2) 600~700Ma and 3) 300~400Ma. The Rb-Sr whole-rock ages for the granitic rocks represent the time of emplacement, whereas the K-Ar ages on biotites generally indicate the time of metamorphism or alteration. The large discordance in the two age systems may not be explained as indicating the cooling period of the granitic batholiths. The K-Ar ages on biotites from the granitoid rocks might not be simply interpreted as the age of the last phase of metamorphism, since the granitic rocks had been undergone multistages of amphibolite facies-metamorphism in the Precambrian period. During the multistages of intermediate grade metamorphism, $^{40}Ar$-loss could be inevitably taken place as the metamorphic temperatures went up above the blocking temperature of biotite ($300{\pm}50^{\circ}C$). The results of the K-Ar dating on biotites from this study are probably minimum ages or hydrothermal alteration ages.

  • PDF

Magma Differentiation and Mineral Accumulation of the Sangnae-ri Dolerite Sill in the Okchon Belt (옥천대내 상내리 조립현무암질 암상에서의 마그마 분화와 광물의 집적)

  • Ahn, Kun-Sang;Kim, Hee-Nam;Shin, In-Hyun
    • Economic and Environmental Geology
    • /
    • v.26 no.3
    • /
    • pp.363-370
    • /
    • 1993
  • Various sizes of dolerite sills occur in the Mungyong area, one of well-exposed areas in Okchon belt. All of previous geochemical studies concluded that chemical variations of basic rocks, so-called Sangnae-ri amphibolite, result from the fractional crystallization. The second sill, which is a well differentiated one in the Sangnae-ri area, displays systematic compositional variation associated with gradual change of grain size in vertical sections. In order to clarify the chemical variation in the sill, whether chemical composition of each part of the sill is appropriately derived from the original liquid (represented by the average composition) by addition or subtraction of initial phenocystic minerals are tested(Iwamori program, 1989). According to the calculation, it is shown that major vertical chemical variation of the sill resulted from the accumulation of phenocrysts(olivine, clinopyrxoene, plagioclase, titanomagnetite) which already existed at the time of emplacement or formed just after the emplacement.

  • PDF

A note on absence of Giseong Series and relation of Precambrian Pyeonghae Series and Wonnam Series of Pyeonghae-Uljin area (평해-울진 지역 선캠브리아기 기성통의 부재 및 평해통과 원남통의 관계에 대한 소고)

  • 김남훈;박계헌;송용선;강지훈
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.271-277
    • /
    • 2002
  • Pyeonghae Series, Giseong Series. Wonnam Series, Pyeonghae Unite gneiss, Hada leuco-granite gneiss are the Precambrian gneisses distributed in the north-eastern part of the Yeongnam massif. Even though there are no difference in lithologies between Pyeonghae and Wonnam Serieses. they have been regarded as different Serieses because of the presence of Giseong Series which has been considered meta-volcanics. However, field investigations reveal that the Giseong Series represents ductile shear zone having meta-volcanics-like appearances in some outcrops. The fact that both Pyeonghae and Wonnam Serieses experienced high grade metamorphism reaching upper amphibolite facies implies that any volcanics between these two Serieses should also occur as high-grade metamorphic rocks at present. The absence of Giseong Series as a low-grade meta-volcanics indicates the absence of logical base to distinguish Pyeonghae and Wonnam Serieses. Therefore, these two Serieses should be regarded as identical Series.

Al-Fe Partitioning between Coexisting Garnet and Epidote from Metamorphic Rocks

  • Kim, Hyung-Shik;Kim, Young-Kyum;Jang, Young-Nam
    • The Journal of the Petrological Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.63-73
    • /
    • 1993
  • The assemblage epidote and grandite garnet occurs in low-to medium-grade metabasites and calc schists of various geotectonic settings and in hydrothermally altered calcareous rocks in skarn deposits. The compositions of sixteen epidote-garnet paris have been analysed by means of electron microprobe. Al-Fe partitioning between coexisting grandite garnet and epidote is considered and measured at the grain boundaries on the supposition that the surface equilibrium was maintained in the following exchange reaction: 2$Ca_2Al_3Si_3O_12$(OH)+$Ca_3Fe_2Si_3O_12$=2$Ca_2A_l2FeSi_3O_12$(OH)+$Ca_3Al_2Si_3O_12$ Partition coefficients confirms the differences in thermal conditions between low-grade and medium-grade metamorphic rocks. $K_D$ values ($X_{$CO_2$}$=($Fe^{+3}$/Al)$^{Ep}$/($Fe^{+3}$/Al)$^{Gr}$, where Fe=$Fe^{+3}$) from greenschist facies rocks of the estimated metamorphic temperatures, 330~$390^{\circ}C$, range approximately between 0.02 and 0.17. Epidote-amphibolite facies rocks and calcareous skarns of the estimated temperatures, 400~$550^{\circ}C$, have $K_D$ values between 0.24 and 0.37. $K_D$ values from the rocks of the temperatures, 640~$700^{\circ}C$, range nearly between 0.58 and 0.75. The diagrams in Figs. 2 and 3 can serve as a mineralogic thermometer for relatively shallow rocks, assuming that the pressure dependence of partition coefficients for the iron-exchange reaction in the two minerals can be neglected.

  • PDF

Metamorphism of the Meta-Sedimentary Rocks in the Osu-Jinan Area, Cheonrapuk-Do, Korea (전라북도 오수-진안 지역에 분포하는 변성퇴적암류에 대한 변성작용)

  • Ahn, Kun Sang;Kim, Yong Jun;Shin, In Hyun
    • Economic and Environmental Geology
    • /
    • v.30 no.2
    • /
    • pp.163-174
    • /
    • 1997
  • Precambrian metapelites and metapsammites of the Jinan-Osu area (so-called Seologri and Yongamsan Formation) consist of black slate, phyllite, mica schist, quartzite and rarely calc schist. They are intruded by Sunkagsan granite gneiss, Foliated granodiorite, Amphibolite, Sunchang foliated granite and Namwon granite. Mylonite texture, crenulation cleavage and minor shear zone are common. The meta-sedimentary rocks include various rock-fragments xenoliths in size (up to 3 cm) and rock-type. They have various porphyroblastic spots in size (up to 1 cm) and their mineral composition is different. The xenoliths are schists, granite and quartzite, which are rectangular or lens form and recrystallized muscovite, chlorite and quartz. Spots are andalusite and biotite aggregates extensively replaced by chlorite. The metamorphic terrain is divided into three zones of progressive metamorphism on the basis of mineral assemblage. They are chlorite zone, chloite-biotite zone and andalusite-biotite zone ascending order, from west to east approximately. Isograd reactions are phengitic muscovite + chlorite = less phengitic muscovite + biotite + quartz + $H_2O$ and muscovite + chlorite + quartz = andalusite + biotite + $H_2O$ between the chlorite zone and chlorite-biotite zone, and between the chloritebiotite zone and andalusite-biotite zone, respectively. Sample B6 (exposed near the Obong-ri) includes staurolites and greenish biotites, that is different in mineral assemblage and chemical composition from the meta-sedimentary rocks. Sample A12 (exposed near the Shinam-ri) has greenish white spots (up to 1 cm in diameter) mainly composed of Kfeldspar, quartz and sillimanite replaced by muscovite.

  • PDF

Serpentinization of Olivine and Pyroxene in Chungnam Serpentinites, Korea (충남지역 사문암내 감람석과 휘석의 사문석화작용)

  • Kim Young-Tae;Woo Young-Kyun
    • Journal of the Korean earth science society
    • /
    • v.26 no.3
    • /
    • pp.297-304
    • /
    • 2005
  • Serpentinites in Chungnam area are mainly composed of serpentines. Serpentines of olivine origin consist of pseudomorphs of olivines and show mesh textureen closed with magnetites along the boundaries of serpentine crystals. In some serpentinites, serpentinization is occurred in crystal boundaries and/or cracks of olivines and pyroxenes which are relict minerals of dunite and harzburgite. On the process from olivine to serpentine, Mg ions are greatly decreased and Si ions are greatly increased, and $Fe^{2+}\;and\;Fe^{3+}$ ions are a little decreased. But, on the process from pyroxene to serpentine, Si ions are greatly decreased and Mg ions are greatly increased. Magnetites around the serpentine crystals were formed from the iron which had been left out through this serpentinization process of olivine. Serpentinization from the original rocks such as dunite and harzburgite in Chungnam area was occurred by various waters affected after formation of original rock, and particularly by metamorphic water in the metamorphic conditions ranging from green schist facies to granulite facies through amphibolite facies.

Mineral Paragenesis and Fluid Inclusion Study of Ssangjeon Tungsten Deposits (쌍전중석광상(雙田重石鑛床)의 광물공생(鑛物共生)과 유체포유물연구(流體包有物硏究))

  • Youn, Seok Tai;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.15 no.4
    • /
    • pp.221-233
    • /
    • 1982
  • Ssangjeon tungsten ore deposits is a complex pegmatite deposits embedded along the contact between pre-Cambrian Buncheon granite gneiss and amphibolite. This pegmatite vein developed 2 km along the strike and thickness varies from 10m to 40m. Mineral constituent of the normal pegmatite are quartz, microcline, plagioclase, muscovite, biotite, tourmaline and garnet. The vein paragenesis is complicated by repeated deposition of quartz but three distinct depositional stage can be recognized. Quartz A stage is the stage of the earliest milky white quartz deposition as a rock forming mineral of normal pegmatite. Quartz B stage is the stage of gray to dark gray quartz replace earlier formed normal pegmatite minerals. Quartz C stage is the stage of latest white translucent massive quartz replace quartz A and B. Tungsten ore minerals and other sulfide minerals were precipitated during quartz B stage. Ore minerals are ferberite and scheelite. Minor amount of molybdenite, arsenopyrite, pyrrhotite, pyrite, chalcopyrite, sphalerite, galena, pentlandite, bismuthinite, native bismuth and marcasite accompanied. Fluid inclusion in quartz A and B are gaseous inclusions and liquid inclusions are contained in quartz C as a primary inclusions. Salinity of inclusions in quartz A and B ranges from 4.5 to 9.5 wt. % and from 5.1 to 6.0 wt. % equivalent NaCl respectively. Homogenization temperature of quartz A; quartz B and quartz C ranges from 415 to $465^{\circ}C$, from 397 to $441^{\circ}C$ and from 278 to $357^{\circ}C$. $CO_2$ content of the ore fluid increased at the ends of quartz B stage.

  • PDF

Petrologic Study on the Basement and the Lower Part of Ogcheon Zone and Igneous Intrusives in the Pyeongchang-Jecheon Area (옥천대(沃川帶)의 지질(地質) 및 광물자원(鑛物資源)에 관(關)한 연구(硏究) -평창(平昌)~제천간(堤川間)에 분포(分布)하는 옥천대하부(沃川帶下部)와 기반(基盤)의 암상(岩相) 및 화성(火成) 관입체(貫入體)의 암질(岩質)에 대(對)한 연구(硏究)-)

  • Lee, Dai Sung;Na, Ki Chang;Kim, Yong Joon
    • Economic and Environmental Geology
    • /
    • v.18 no.4
    • /
    • pp.381-397
    • /
    • 1985
  • A petrological study has been done in the pyeongchang-Jaecheon area which is a northwestern part of the basement of Ogcheon zone for the purpose of comparison of the area to the Nogjeon-Yeongchun area which is the antipodal basement of the zone in the petrological and geotectonical view points. The major units of the area are Precambrian granitic gneissic complex, banded gneiss, linea ted leucocratic gneiss and pegmatitic leucogranitic gneiss in the west, elongated exposure of quartz schist (or partly quartzite) and phyllite, named as Jungdaegal-bong Group correlated to the lower sequence of Joseon Group, in the middle, and limestone and calcic dolomite, Iptanri Formation, correlated to the middle of Joseon Group in the east. Igneous plutons are distributed in the areas of gneissic complex and limestone formation as well as in the Eosangcheon and Daedaeri areas in the southeastern out of the area. Present study reveals that the gneissic complex are the products of granitization to metamorphism of amphibolite facies in the order of above mentioned from the metasediments of schists and calcareous rocks. A notable characteristics of the phyllite of Jungdaegal-bong Group is the presence of syntectonically segregated quartz rods in the forms of lens, swirl or boudinage in evenly distributed in the phyllitic to chloritic matrix. Igneous rocks range in composition from gabbro through diorite, granodiorite, to schistosed and porphyritic granites in stock and dike. The orogenic movement of the Ogcheon zone initiated in the middle Proterozoic time, pre-sedimentation of Ogcheon Group and superposed the granitization in Permian, Jurassic Daebo orogeny with granitic batholiths and stocks, and Cretaceous plutonic intrusion.

  • PDF

Effect of Intermediate Principal Stress on Rock Fractures

  • Chang, Chan-Dong
    • Journal of the Korean earth science society
    • /
    • v.25 no.1
    • /
    • pp.22-31
    • /
    • 2004
  • Laboratory experiments were conducted in order to find effects of the intermediate principal stress of ${\sigma}_{2}$ on rock fractures and faults. Polyaxial tests were carried out under the most generalized compressive stress conditions, in which different magnitudes of the least and intermediate principal stresses ${\sigma}_{3}$ and ${\sigma}_{2}$ were maintained constant, and the maximum stress ${\sigma}_{1}$, was increased to failure. Two crystalline rocks (Westerly granite and KTB amphibolite) exhibited similar mechanical behavior, much of which is neglected in conventional triaxial compression tests in which ${\sigma}_{2}$ = ${\sigma}_{3}$. Compressive rock failure took the form of a main shear fracture, or fault, steeply dipping in ${\sigma}_{3}$ direction with its strike aligned with ${\sigma}_{2}$ direction. Rock strength rose significantly with the magnitude of ${\sigma}_{2}$, suggesting that the commonly used Mohr-type failure criteria, which ignore the ${\sigma}_{2}$ effect, predict only the lower limit of rock strength for a given ${\sigma}_{3}$ level. The true triaxial failure criterion for each of the crystalline rocks can be expressed as the octahedral shear stress at failure as a function of the mean normal stress acting on the fault plane. It is found that the onset of dilatancy increases considerably for higher ${\sigma}_{2}$. Thus, ${\sigma}_{2}$ extends the elastic range for a given ${\sigma}_{3}$ and, hence, retards the onset of the failure process. SEM inspection of the micromechanics leading to specimen failure showed a multitude of stress-induced microcracks localized on both sides of the through-going fault. Microcracks gradually align themselves with the ${\sigma}_{1}$-${\sigma}_{2}$ plane as the magnitude of ${\sigma}_{2}$ is raised.