Journal of the Institute of Electronics Engineers of Korea CI
/
v.48
no.6
/
pp.47-55
/
2011
The performance of data transmission from mobile devices to cloud storages is limited by the amount of data being transferred, communication speed and battery consumption of mobile devices. Especially, when the large-scale data communication takes place using mobile devices, such as smart phones, the performance turbulence and power consumption become an obstacle to establish the reliable communication environment. In this paper, we present an efficient data transmission method using USB Hijacking. In our approach, the synchronization to transfer a large amount of data between mobile devices and user PC is executed by using USB Hijacking. Also, there is no need to concern about data capacity and battery consumption in the data communication. We presented several experimental results to verify the effectiveness and suitability of our approach.
Alasmari, Moteb K.;Alwakeel, Sami S.;Alohali, Yousef
International Journal of Computer Science & Network Security
/
v.22
no.3
/
pp.163-172
/
2022
The interconnection of an enormous number of devices into the Internet at a massive scale is a consequence of the Internet of Things (IoT). As a result, tasks offloading from these IoT devices to remote cloud data centers become expensive and inefficient as their number and amount of its emitted data increase exponentially. It is also a challenge to optimize IoT device energy consumption while meeting its application time deadline and data delivery constraints. Consequently, Fog Computing was proposed to support efficient IoT tasks processing as it has a feature of lower service delay, being adjacent to IoT nodes. However, cloud task offloading is still performed frequently as Fog computing has less resources compared to remote cloud. Thus, optimized schemes are required to correctly characterize and distribute IoT devices tasks offloading in a hybrid IoT, Fog, and cloud paradigm. In this paper, we present a detailed survey and classification of of recently published research articles that address the energy efficiency of task offloading schemes in IoT-Fog-Cloud paradigm. Moreover, we also developed a taxonomy for the classification of these schemes and provided a comparative study of different schemes: by identifying achieved advantage and disadvantage of each scheme, as well its related drawbacks and limitations. Moreover, we also state open research issues in the development of energy efficient, scalable, optimized task offloading schemes for Fog computing.
Lim, Yo Han;Jeong, In Hyeok;Lee, San Sung;Hwang, Sung Soo
Journal of Korea Multimedia Society
/
v.24
no.11
/
pp.1518-1525
/
2021
Due to the growth of VR industry and rise of digital twin industry, the importance of implementing 3D data same as real space is increasing. However, the fact that it requires expertise personnel and huge amount of time is a problem. In this paper, we propose a system that generates point cloud data with same shape and color as a real space, just by scanning the space. The proposed system integrates 3D geometric information from lidar and color information from stereo camera into one point cloud. Since the number of 3D points generated by lidar is not enough to express a real space with good quality, some of the pixels of 2D image generated by camera are mapped to the correct 3D coordinate to increase the number of points. Additionally, to minimize the capacity, overlapping points are filtered out so that only one point exists in the same 3D coordinates. Finally, 6DoF pose information generated from lidar point cloud is replaced with the one generated from camera image to position the points to a more accurate place. Experimental results show that the proposed system easily and quickly generates point clouds very similar to the scanned space.
Proceedings of the Korean Society of Precision Engineering Conference
/
2000.11a
/
pp.272-276
/
2000
Reverse engineering refers to the process that creates a physical part from acquiring the surface data of an existing part using a scanning device. In recent years, as the non-contact type scanning devices become more popular, the huge amount of point data can be obtained with high speed. The point data handling process, therefore, becomes more important since the scan data need to be refined for the efficiency of subsequent tasks such as mesh generation and surface fitting. As one of point handling functions, the cross-sectioning function is still frequently used for extracting the necessary data from the point cloud. The commercial reverse engineering software supports cross-sectioning functions, however, these are only for cross-sectioning the point cloud with the constant spacing and direction. In this paper, adaptive cross-sectioning point cloud which allow the changes of the spacing and directions of cross-sections according to the constant spacing and direction. In this paper, adaptive cross-sectioning algorithms which allow the changes of the spacing and directions of cross-sections according to the curvature difference of the point cloud data are proposed.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.5
no.10
/
pp.1712-1732
/
2011
Cloud provides dynamically scalable virtualized computing resources as a service over the Internet. To achieve higher resource utilization over virtualization technology, an optimized strategy that deploys virtual machines on physical machines is needed. That is, the total number of active physical host nodes should be dynamically changed to correspond to their resource usage rate, thereby maintaining optimum utilization of physical machines. In this paper, we propose a pattern-based prediction model for resource provisioning which facilitates best possible resource preparation by analyzing the resource utilization and deriving resource usage patterns. The focus of our work is on predicting future resource requests by optimized dynamic resource management strategy that is applied to a virtualized data center in a Cloud computing environment. To this end, we build a prediction model that is based on user request patterns and make a prediction of system behavior for the near future. As a result, this model can save time for predicting the needed resource amount and reduce the possibility of resource overuse. In addition, we studied the performance of our proposed model comparing with conventional resource provisioning models under various Cloud execution conditions. The experimental results showed that our pattern-based prediction model gives significant benefits over conventional models.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.9
/
pp.2717-2738
/
2024
Cloud computing has extensively grown in recent years. A large amount of data is stored in cloud servers. To ensure confidentiality, these data is often encrypted and then stored in cloud servers. However, encryption makes range queries difficult to perform. To solve this issue, we present a scheme that facilitates fast range queries on encrypted multi-dimensional data in scenarios involving multiple users. In our scheme, we construct a tree index on encrypted multi-dimensional data, and each node is linked to a secure enhanced multi-dimensional range (MDR). To support efficient range query on the tree index, we adopt bloom filter technique. Additionally, users' privileges are designed in a one-way calculation manner to support that different users can only perform range queries within their own privileges. Finally, we conduct extensive experiments which show the efficiency of our scheme, and also conduct a thorough analysis of its security.
Journal of the Korea Society of Computer and Information
/
v.25
no.4
/
pp.105-112
/
2020
In the fourth industrial revolution represented by hyper-connected and intelligence, cloud computing is drawing attention as a technology to realize big data and artificial intelligence technologies. The proliferation of cloud computing has also increased the number of threats. In this paper, we propose one way to effectively monitor to the resources assigned to clients by the IaaS service provider. The method we propose in this paper is to model the use of resources allocated to cloud systems using ARIMA algorithm, and it identifies abnormal situations through the use and trend analysis. Through experiments, we have verified that the client service provider can effectively monitor using the proposed method within the minimum amount of access to the client systems.
Sungryeul Rhyu;Junsik Kim;Gwang Hoon Park;Kyuheon Kim
ETRI Journal
/
v.46
no.4
/
pp.683-696
/
2024
The point cloud provides viewers with intuitive geometric understanding but requires a huge amount of data. Moving Picture Experts Group (MPEG) has developed video-based point-cloud compression in the range of 300-700. As the compression rate increases, the complexity increases to the extent that it takes 101.36 s to compress one frame in an experimental environment using a personal computer. To realize real-time point-cloud compression processing, the direct patch projection (DPP) method proposed herein simplifies the complex patch segmentation process by classifying and projecting points according to their geometric positions. The DPP method decreases the complexity of the patch segmentation from 25.75 s to 0.10 s per frame, and the entire process becomes 8.76 times faster than the conventional one. Consequently, this proposed DPP method yields similar peak signal-to-noise ratio (PSNR) outcomes to those of the conventional method at reduced times (4.7-5.5 times) at the cost of bitrate overhead. The objective and subjective results show that the proposed DPP method can be considered when low-complexity requirements are required in lightweight device environments.
Cloud computing is becoming an effective and efficient way of computing resources and computing service integration. Through centralized management of resources and services, cloud computing delivers hosted services over the internet, such that access to shared hardware, software, applications, information, and all resources is elastically provided to the consumer on-demand. The main enabling technology for cloud computing is virtualization. Virtualization software creates a temporarily simulated or extended version of computing and network resources. The objectives of virtualization are as follows: first, to fully utilize the shared resources by applying partitioning and time-sharing; second, to centralize resource management; third, to enhance cloud data center agility and provide the required scalability and elasticity for on-demand capabilities; fourth, to improve testing and running software diagnostics on different operating platforms; and fifth, to improve the portability of applications and workload migration capabilities. One of the key features of cloud computing is elasticity. It enables users to create and remove virtual computing resources dynamically according to the changing demand, but it is not easy to make a decision regarding the right amount of resources. Indeed, proper provisioning of the resources to applications is an important issue in IaaS cloud computing. Most web applications encounter large and fluctuating task requests. In predictable situations, the resources can be provisioned in advance through capacity planning techniques. But in case of unplanned and spike requests, it would be desirable to automatically scale the resources, called auto-scaling, which adjusts the resources allocated to applications based on its need at any given time. This would free the user from the burden of deciding how many resources are necessary each time. In this work, we propose an analytical and efficient VM-level scaling scheme by modeling each VM in a data center as an M/M/1 processor sharing queue. Our proposed VM-level scaling scheme is validated via a numerical experiment.
In this paper, we propose 3D cloud animation by cloud modeling method of 2D images retrieved from a meteorological satellite. First, on the satellite images, we locate numerous control points to perform thin-plate spline warping analysis between consecutive frames for the modeling of cloud motion. In addition, the spectrum channels of visible and infrared wavelengths are used to determine the amount and altitude of clouds for 3D cloud image reconstruction. Pre-integrated volume rendering method is used to achieve seamless inter-laminar shades in real-time using small number of slices of the volume data. The proposed method could successfully construct continuously moving 3D clouds from 2D satellite images at an acceptable speed and image quality.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.