• Title/Summary/Keyword: amorphous wire

Search Result 47, Processing Time 0.033 seconds

Magnetic Field Distribution of Power Line Using Amorphous Wire (아몰포스선을 이용한 전력선의 자계분포)

  • Moriyama, T.;Cho, M.W.;Hikita, M.;Hong, J.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.609-612
    • /
    • 2001
  • To investigate the magnetic field distribution of power line, we used amorphous wire sensor. And we discuss extremely low frequency magnetic field distribution dependent upon arrangement of power line and shielding pipe made from iron or alumimum materials by both measurement and FEM(Finite Element Method) analysis. Appling current of single phase 60 [Hz] 15 [A] is supplied to copper wire coated enamel resign. As the results, we confirmed that linear characteristics of amorphous wire sensor is very excellent and measurement value agrees with FEM calculation. Magnetic field distribution due to shielding materials is changed by permeability and conductivity.

  • PDF

A Study on the Sensing Function of Amorphous Magnetostrictive Wire (아몰퍼스 자왜 와이어의 센싱기능에 관한 연구)

  • 조남희;신용진;서강수;임재근;문현욱
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.89-92
    • /
    • 1996
  • In this paper, we mention the study on the sensing function of amorphous magneto- striction wire with about 125${\mu}{\textrm}{m}$$\Phi$ in diameter. The wire in fabricated by using injection and quenching method under the high speed rotating water flow. The wire\`s compotion is (Fe$_{75}$ $Co_{25}$)$_{77}$Si$_{8}$B$_{15}$ , and generates sharp Matteucci voltage by large Barkhausen jump effect even the weak magnetic field. In this study, we don\`t use pick-up coil. Instead, we apply external magnetic field of 3.6Oe in the direction orthogonal to the wire. Then, we detect Matteucci voltage of 1.lmV to both side of 20cm amorphous-wire. Thus, we find that the fabricated wire has the function necessary as the high sensitive sensor material.l.al.l.

  • PDF

Application of Amorphous wire to ECT(Eddy Current Testing) Probe (아몰퍼스 와이어의 ECT probe 적용에 대한 검토)

  • Kim, Y.H.;Shin, K.H.;SaGong, Gun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.47-51
    • /
    • 2002
  • ECT(eddy currentign testing) is very effective technique to detect a flaw within a conductor. Co-based amorphous wire was used as a sensor head. The wire has almost 0 magneto-striction and high permeability. An uniform magnetic field was applied to 1mm thick copper plate and $25{\mu}m$ thick aluminum sheet conductor using spiral typed coil The size of the coil has $40mm{\times}40mm$ outer width and $8mm{\times}8mm$ inner width. The copper plate and aluminum sheet has 0.5mm and 0.1mm wide gap, respectively. The frequency range of applied field was 100kHz-600kHz. The induced voltage difference of 2.5mV was obtained in the maximum voltage and minimum one measured across the gap of the 1mm thick conductor. In the case of aluminum sheet, 0.4mV was obtained. From this results, the effectiveness of Co-based amorphous wire was confirmed in the ECT technique.

  • PDF

A Study on the Fabrication of Amorphous Magnetostrictive Wire (아몰퍼스 자왜 와이어의 제작에 관한 연구)

  • 김대주;정왕일;조남희;신용진;강재덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.99-101
    • /
    • 1996
  • This paper is concerned with the fabrication of (Fe,Co)-Si-B amorphous magneto-strictive wire which attracts strong attention as a new sensor material. First, we put the ingot of (Fe$\sub$1-x/Co$\sub$x/)$\sub$77/Si$\sub$8/B$\sub$15/ composition into quartz tube. Then, under the condition of 400MHz and 8kW, we melt and mix the in-got in the high frequency induction furnance. After that, we obtain the magnetostrictive wire of 100∼150$\mu\textrm{m}$ in diameter by injection and rapid quenching within the high rotating water. Finally, we find that the wire is under the amorphous state.

  • PDF

Fundamental Study on the Formation of Nanostructured Coating Layer (나노구조 용사코팅층의 형성에 관한 기초적 연구)

  • Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.90-95
    • /
    • 2005
  • The wire-arc process is a low-cost thermal spray method simply utilizes electrical energy to melt the feedstock wire. It is more userful for field applications, especially to coat large surface area. In this paper, a special Fe-based alloy coatings by using the wire-arc process were developed. Nanoscale composite coatings were achieved either during spraying or through a post heat treatment. As-sprayed Fe-based alloy coatings had been an amorphous matrix structure, after heating to $700^{\circ}C$ for 10 minutes a solid state transformation occurred in the some fraction of amorphous matrix which resulted in the formation of nanostructured recrystallized phase. Scanning electron microscopy (SEM) and field emotional scanning electron microscope(FE-SEM) were applied to analyze the microstructure of the coatings. Additionally hardness and bend resistance of the Fe-based alloy coatings were examined, and these results were compared with those of partially stabilized zirconia(PSZ) coatings by using the plasma spray process.

  • PDF

Hydrogen-Dependent Catalytic Growth of Amorphous-Phase Silicon Thin-Films by Hot-Wire Chemical Vapor Deposition (HWCVD를 이용한 Amorphous Si 박막 증착공정에서 수소량에 따른 박막성장 특성)

  • Park, Seungil;Ji, Hyung Yong;Kim, MyeongJun;Kim, Keunjoo
    • Current Photovoltaic Research
    • /
    • v.1 no.1
    • /
    • pp.27-32
    • /
    • 2013
  • We investigated the growth mechanism of amorphous-phase Si thin films in order to improve the film characteristics and circumvent photo-degradation effects by implementation of hot-wire chemical vapor deposition. Amorphous silicon thin films grown in a silane/hydrogen mixture can be decomposed by a resistive heat filament. The structural properties were observed by Raman spectroscopy, FTIR, SEM, and TEM. The electrical properties of the films were measured by photo-conductivity, dark-conductivity, and photo-sensitivity. The contents of Si-H and $Si-H_n$ bonds were measured to be 19.79 and 9.96% respectively, at a hydrogen flow rate of 5.5 sccm, respectively. The thin film has photo-sensitivity of $2.2{\times}10^5$ without a crystalline volume fraction. The catalyst behavior of the hot-wire to decompose the chemical precursors by an electron tunneling effect depends strongly on the hydrogen mixture rate and an amorphous Si thin film is formed from atomic relaxation.

Optimization of Operation Frequency of Orthogonal Fluxgate Sensor Fabricated with Co Based Amorphous Wire

  • Kim, Young-Hak;Kim, Yongmin;Yang, Chang-Seob;Shin, Kwang-Ho
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.159-162
    • /
    • 2013
  • We present how to optimize the operation condition including frequency of the orthogonal fluxgate sensor in this paper. The orthogonal fluxgate sensor was fabricated with a Co-based amorphous wire with 10 mm long and 100 ${\mu}m$ in the diameter and a 270-turn pickup coil wound on the amorphous wire. In order to investigate the frequency dependence of the sensitivity, output spectra of the sensor which was connected by using a coaxial cable with various lengths of 0.5-5 m were measured with a RF lock-in amplifier. The maximum sensitivities were obtained at different frequencies according to coaxial cable lengths. It was found that the optimal operation frequencies, at which maximum sensitivities were appeared, were almost identical to the frequencies of impedance resonance. The maximum sensitivity and optimal operation frequency were 1.1 V/Oe (${\approx}$ 11000 V/T) and 1.25 MHz respectively.

Characteristics of Coaxial Typed Magnetic Sensor Using Amorphous Wire (자성와이어를 이용한 동축케이블형 자계센서의 특성)

  • Kim, Y.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.55-59
    • /
    • 2007
  • Co-based amorphous magnetic wire with a diameter of $125{\mu}m$ and a length of 40 mm was used as an inner conductor of a coaxial cable to construct a magnetic sensor. Sensor characteristics was measured up to 3 GHz with applied up to 60 Oe by using network analyzer. Frequency dependence of impedance for this sensor was very close to the impedance resonant pattern of transmission line and 250 MHz was obtained as a 1/4 wavelength without external magnetic field. Large impedance change was measured in the magnetic field range between 0 Oe and 1 Oe, which was influenced by permeability change of magnetic amorphous wire. Because ${\Delta}Z/{\Delta}H$ value of $300{\Omega}/Oe$ was obtained at 0.1 Oe, this coaxial cable with amorphous wire can be useful as a magnetic sensor.

Composite and Spark Plasma Sintering of the Atomized Fe Amorphous Powders and Wire-exploded Cu Nanopowder in Liquid (가스분무 Fe계 비정질 분말과 유체 내 전기선 폭발에 의한 나노 Cu 분말의 복합화와 방전플라즈마 소결)

  • Kim, Jin-Chun;Goo, Wang-Heo;Yoo, Joo-Sik
    • Journal of Powder Materials
    • /
    • v.15 no.4
    • /
    • pp.285-291
    • /
    • 2008
  • Fe based ($Fe_{68.2}C_{5.9}Si_{3.5}B_{6.7}P_{9.6}Cr_{2.1}Mo_{2.0}Al_{2.0}$) amorphous powder were produced by a gas atomization process, and then ductile Cu powder fabricated by the electric explosion of wire(EEW) were mixed in the liquid (methanol) consecutively. The Fe-based amorphous - nanometallic Cu composite powders were compacted by a spark plasma sintering (SPS) processes. The nano-sized Cu powders of ${\sim}\;nm$200 produced by EEW in the methanol were mixed and well coated with the atomized Fe amorphous powders through the simple drying process on the hot plate. The relative density of the compacts obtained by the SPS showed over 98% and its hardness was also found to reach over 1100 Hv.

Flaw Detection in a Conductor Using Sensor Head of Amorphous Wire (비정질 와이어를 센서헤드로 이용한 금속의 미세결함 검출)

  • Kim, Y.H.;Shin, K.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.5
    • /
    • pp.174-178
    • /
    • 2002
  • Ac magnetic field was changed in the vicinity of a flaw because of the distribution of eddy current within a conductor, when the magnetic field was applied to a conductor having a flaw. The flaw detection was performed by using Co-based amorphous wire sensor head. The wire has almost 0 magneto-striction and high permeability. An comparative uniform magnetic field was applied to a 1㎜ thick copper plate and a 25㎛ thick aluminum sheet conductor using spiral typed coil. The size of the coil has 40㎜$\times$40㎜ outer width and 8㎜$\times$8㎜ inner width. The copper plate and the aluminum sheet has 0.5㎜ and 0.1㎜ wide gap, respectively. The frequency range of applied field was 100㎑∼600㎑. The induced voltage difference of 2.5㎷ was obtained in the maximum voltage and minimum one measured across the gap of the 1mm thick conductor. In the case of aluminum sheet, 0.4㎷ was obtained. From this results, the effectiveness of Co-based amorphous wire was confirmed in the ECT technique.