• Title/Summary/Keyword: amorphous powder

Search Result 396, Processing Time 0.028 seconds

Synthesis and Electrochemical Performance of Li2MnSiO4 for Lithium Ion Battery Prepared by Amorphous Silica Precusor (비정질 실리콘 산화물을 이용한 리튬망간실리콘산화물의 합성 및 전기화학적 특성 평가)

  • Jin, Yun-Ho;Lee, Kun-Jae;Kang, Lee-Seung;Jung, Hang-Chul;Hong, Hyun-Seon
    • Journal of Powder Materials
    • /
    • v.19 no.3
    • /
    • pp.210-214
    • /
    • 2012
  • Mass production-capable $Li_2MnSiO_4$ powder was synthesized for use as cathode material in state-of-the-art lithium-ion batteries. These batteries are main powder sources for high tech-end digital electronic equipments and electric vehicles in the near future and they must possess high specific capacity and durable charge-discharge characteristics. Amorphous silicone was quite superior to crystalline one as starting material to fabricate silicone oxide with high reactivity between precursors of sol-gel type reaction intermediates. The amorphous silicone starting material also has beneficial effect of efficiently controlling secondary phases, most notably $Li_xSiO_x$. Lastly, carbon was coated on $Li_2MnSiO_4$ powders by using sucrose to afford some improved electrical conductivity. The carbon-coated $Li_2MnSiO_4$ cathode material was further characterized using SEM, XRD, and galvanostatic charge/discharge test method for morphological and electrochemical examinations. Coin cell was subject to 1.5-4.8 V at C/20, where 74 mAh/g was observed during primary discharge cycle.

Development of EM Wave Absorber for Port Logistics RFID System by Using Amorphous Metal Powder (Amorphous Metal Powder를 이용한 항만 물류 RFID 시스템용 전파흡수체 개발)

  • Choi, Dong-Soo;Yoo, Gun-Suk;Kim, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.34 no.1
    • /
    • pp.27-31
    • /
    • 2010
  • In this paper, we developed an EM wave absorber having the absorption ability of more than 15 dB for port logistics RFID system by using AMP. Firstly, we fabricated EM wave absorber by using AMP and CPE(Chlorinated Polyethylene) with different composition ratios 80:20 wt.% and 85:15 wt.%. Secondly, we designed the optimum EM wave absorber using the calculated material constants obtained from measured input impedance of the samples. Therefore, EM wave absorber with absorption ability of 17.5 dB at 433 MHz when composition ratio of AMP:CPE=85:15 wt.% and thickness of 5.5 mm.

Fabrication and structural observation of amorphous V-Co alloy by mechanical alloying (MA법에 의한 V-Co계 비정질합금의 제조 및 구조분석)

  • Lee, Chung-Hyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.1
    • /
    • pp.51-56
    • /
    • 2012
  • In the present study, we investigated the effect of mechanical alloying (MA) on the formation of amorphous VCo system through solid state reaction during ball milling. Two types of powder samples, ${\sigma}$-VCo intermetallic compound and $V_{50}Co_{50}$ powder mixture, were applied as a starting materials. With increasing milling time, a structural characteristics into the amorphous state is distinctly observed from the structural factor and radial distribution by X-ray diffraction. Amorphization has been observed in all two types of samples after the milling for 120 hrs. DSC spectrum of $V_{50}Co_{50}$ powder sample milled for 60 hrs indicates a sharp exothermic peak from the crystallization at $600^{\circ}C$. The structure factor, S(Q) and radial distribution function, RDF(r), observed by X-ray diffraction gradually change into a structure characteristic of an amorphous state with increasing MA time.

Microstructural Evolution and Dielectric Response Characteristics During Crystallization of Amorphous Pb(Fe2/3W1/3)O3

  • Kim, Nam-Kyung;David A. Payne
    • The Korean Journal of Ceramics
    • /
    • v.1 no.2
    • /
    • pp.75-80
    • /
    • 1995
  • Development of phases, evolution of microstructures, and dielectric response characteristics of amorphous lead iron tungstates during crystabllization were investiageted. A series of mircographs showing the evolution sequence of microstructures is presented. Crystallization was observed to initiate from inside of the amorphous material. A cubic perovskite phase developed fully at $760^{\circ}C$ from amorphous state via intermediate metastable crystalline structures. Dielectric constant of amorphous PFM was totally insensitive to the temperature change around the Curie temperature of crystalline material. Sintered pellet, with relative density of 96% and an almost pore-free dense internal microstructure, could be prepared from amorphous powder.

  • PDF

Bulk Amorphous and/or Nanocrystalline Finemet Alloy Prepared by Super-high-pressure Consolidation

  • Lu, Wei;Yanb, Biao
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.788-789
    • /
    • 2006
  • Microstructure and soft magnetic properties of bulk amorphous and/or nanocrystalline $Fe_{73.5}Cu_1Nb_3Si_{13.5}B_9$ alloys prepared by consolidation at 5.5GPa were investigated. The relative density of the bulk sample 1 (from amorphous powders) was 98.5% and the grain sizes were about 10.6nm. While the relative density and grain sizes of bulk sample 2 (from nanocrystalline powders) are 98% and 20.1nm, respectively. Particularly, the bulk samples exhibited a good combined magnetic property: for Sample1, $M_s=125emu/g$ and $H_c=1.5Oe;$ for Sample2, $M_s=129emu/g$ and $H_c=3.3Oe$. The success of synthesizing the nanocrystalline Fe-based bulk alloys will be encouraging for the future development of bulk nanocrystalline soft magnetic alloys.

  • PDF

Performance Evaluation of Trial Product of Amorphous Metallic Fiber Reinforced Porous Block Using High Volume Blast Furnace Slag Powder (고로슬래그를 대량 활용한 비정질 금속 섬유보강 투수블럭의 시제품 성능평가)

  • Kim, Do-Bin;Kim, Young-Uk;Kim, Sung-Jin;Kim, Hye Jeong;Jeong, Su Bin;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.81-82
    • /
    • 2017
  • This study analyzed the compressive and flexural strength characteristics and the permeability coefficient of the trial product of amorphous metallic fiber reinforced porous block using high volume blast furnace slag powder.

  • PDF

Amorphization Process of Cr-N Alloy System by Mechanical Alloying (기계적 합금화에 의한 Cr-N계 합금의 비정질화 과정)

  • 이충효;이성희;이상진;권영순
    • Journal of Powder Materials
    • /
    • v.10 no.4
    • /
    • pp.288-293
    • /
    • 2003
  • Mechanical alloying (MA) by high energy ball mill of Pure chromium Powders was carried out under the nitrogen gas atmosphere. Cr-N amorphous alloy powders have been produced through the solid-gas reaction subjected to MA. The atomic structure during amorphization process was observed by X-ray and neutron diffractions. An advantage of the neutron diffraction technique allows us to observe the local atomic structure surrounding a nitrogen atom. The coordination number of metal atoms around a N atom turns out to be 5.5 atoms. This implies that a nitrogen atom is located at both of centers of the tetrahedron and octahedron formed by metal atoms to stabilize an amorphous Cr-N structure. Also, we have revealed that a Cr-N amorphous alloy may produced from a mixture of pure Cr and Cr nitrides powders by solid-solid reaction during mechanical alloying.

Additive Coating of BaTiO3 Powder using Sol Coating Method I - Development of Coating Process by BaTiO3 Sol (졸 코팅 법을 이용한 BaTiO3 분체의 첨가제 코팅 I - BaTiO3 졸 코팅 공정 연구)

  • 신효순
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.953-959
    • /
    • 2004
  • BaTiO$_3$ powder has been applied in so much electronic ceramics. Therefore, as recent, the method to add or coat additive will be needed BaTiO$_3$ powder. As a kind of the method, the coating of BaTiO$_3$ powder was considered. In this study, during BaTiO$_3$ powder was coated by BaTiO$_3$ sol, gelation path was experimented. Standard coating condition was set for homogeneous coating. The phase of the gel was deferent by gelation path. It was confirmed the amorphous gel was made in BaTiO$_3$ phase easily at low temperature. In the amorphous gel, particle growth was shown at 900$^{\circ}C$, because crystallization temperature was low. The optimal ratio of sol and powder was at 10 vol% for the homogeneous coating.

Mechanical Properties of Beta-Sialon Ceramics Prepared from TEOS and Kaolin (TEOS와 카올린으로부터 제조한 $\beta$-Sialon의 기계적 성질)

  • 임헌진;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.5
    • /
    • pp.637-644
    • /
    • 1989
  • Beta-sialon powder(Z=1) was synthesized by the simultaeous reduction and nitridation of the mixed powders of Hadong kaolin and silica. Silicon hydroxide was prepared from Si-alkoxide by a hydrolysis method and amorphous silica was obtained from the calcination of the prepared silicon hydroxide. Hadong kaolin was mixed with both the silicon hydroxide and amorphous silica, respectively. The average particle size was 4${\mu}{\textrm}{m}$ and the morphology of particle was rod-like and equiaxed in the case of beta-sialon powder prepared form Hadong kaolin and silicon hydroxide(COMPOSITION A), whereas the average particle size was 3${\mu}{\textrm}{m}$ and the morphology of particle was equiaxed in the case of beta-sialon powder prepared from Hadong kaolin and amorphous silica(COMPOSITION B). The synthesized beta-sialon powders were hot-pressed at 175$0^{\circ}C$ for 2 hours under 30 MPa in a nitrogen atmosphere after YAG composition(8wt%) was added to these powders as a sintering agent. The hot-pressed specimens were annealed a 140$0^{\circ}C$ for 4 hours in a nitrogen atmosphere. The mechanical properties of sintered bodies were investigated in terms of M.O.R., fracture toughness and hardness. The measured values are as follows. COMPOSITION A : M.O.R. 508MPa, KIC 3.5MN/m3/2, hardness 13.6GPa. COMPOSITION B : M.O.R. 653MPa, KIC 5.4MN/m3/2, hardness 13.5GPa.

  • PDF