• 제목/요약/키워드: amorphous diamond

검색결과 88건 처리시간 0.027초

마이크로 및 나노 박막의 잔류응력을 측정하기위한 새로운 방법 (A New Method for Measuring Residual Stress in Micro and Nano Films)

  • 강기주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.438-444
    • /
    • 2003
  • A new method to measure residual stress in micron and nano scale films is described. In the theory it is based on Linear Elastic Fracture Mechanics. And in the techniques it depends on the combined capability of the focused ion beam (FIB) imaging system and of high-resolution digital image correlation (DIC) software. The method can be used for any film material (whether amorphous or crystalline) without thinning the substrate. In the method, a region of the film surface is highlighted and scanning electron images of that region taken before and after a long slot, depth a, is introduced using the FIB. The DIC software evaluates the displacement of the surface normal to the slot due to the stress relaxation by using features on the film surface. To minimize the influence of signal noise and rigid body movement, not a few, but all of the measure displacements are used for determining the real residual stress. The accuracy of the method has been assessed by performing measurements on a nano film of diamond like carbon (DLC) on glass substrate and on micro film of aluminum oxide thermally grown on Fecrally substrate. It is shown that the new method determines the residual stress ${\sigma}_R=-1.73$ GPa for DLC and ${\sigma}_R=-5.45$ GPa for the aluminum oxide, which agree quite well with ones measured independently.

  • PDF

A Novel Large Area Negative Sputter Ion Beam source and Its Application

  • Kim, Steven
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.73-73
    • /
    • 1999
  • A large area negative metal ion beam source is developed. Kinetic ion beam of the incident metal ions yields a whole nucleation and growth phenomena compared to the conventional thin film deposition processes. At the initial deposition step one can engineer the surface and interface by tuning the energy of the incident metal ion beams. Smoothness and shallow implantation can be tailored according to the desired application process. Surface chemistry and nucleation process is also controlled by the energy of the direct metal ion beams. Each individual metal ion beams with specific energy undergoes super-thermodynamic reactions and nucleation. degree of formation of tetrahedral Sp3 carbon films and beta-carbon nitride directly depends on the energy of the ion beams. Grain size and formation of polycrystalline Si, at temperatures lower than 500deg. C is obtained and controlled by the energy of the incident Si-ion beams. The large area metal ion source combines the advantages of those magnetron sputter and SKIONs prior cesium activated metal ion source. The ion beam source produces uniform amorphous diamond films over 6 diameter. The films are now investigated for applications such as field emission display emitter materials, protective coatings for computer hard disk and head, and other protective optical coatings. The performance of the ion beam source and recent applications will be presented.

  • PDF

Terabit-per-square-inch Phase-change Recording on Ge-Sb-Te Media with Protective Overcoatings

  • Shin Jin-Koog;Lee Churl Seung;Suh Moon-Suk;Lee Kyoung-Il
    • 정보저장시스템학회:학술대회논문집
    • /
    • 정보저장시스템학회 2005년도 추계학술대회 논문집
    • /
    • pp.185-189
    • /
    • 2005
  • We reported here nano-scale electrical phase-change recording in amorphous $Ge_2Sb_2Te_5$ media using an atomic force microscope (AFM) having conducting probes. In recording process, a pulse voltage is applied to the conductive probe that touches the media surface to change locally the electrical resistivity of a film. However, in contact operation, tip/media wear and contamination could major obstacles, which degraded SNR, reproducibility, and lifetime. In order to overcome tip/media wear and contamination in contact mode operation, we adopted the W incorporated diamond-like carbon (W-DLC) films as a protective layer. Optimized mutilayer media were prepared by a hybrid deposition system of PECVD and RF magnetron sputtering. When suitable electrical pulses were applied to media through the conducting probe, it was observed that data bits as small as 25 nm in diameter have been written and read with good reproducibility, which corresponds to a data density of $1 Tbit/inch^2$. We concluded that stable electrical phase-change recording was possible mainly due to W-DLC layer, which played a role not only capping layer but also resistive layer.

  • PDF

플라즈마 CVD 법을 이용한 대면적 균일한 비정질 탄소 막 증착 (Large-area Uniform Deposition of Amorphous Hydrogenated Carbon Films using a Plasma CVD Method)

  • 윤상민;양성채
    • 한국전기전자재료학회논문지
    • /
    • 제22권5호
    • /
    • pp.411-414
    • /
    • 2009
  • It has been investigated for the film uniformity and deposition rate of a-C:H films on glass substrate and polymeric materials in the presence of the modulated crossed magnetic field. We used Plasma CVD, i.e, using a crossed electromagnetic field, for uniform depositing thin film. The optimum discharge condition has been discussed for the gas pressure, the magnetic flux density and the distance between substrate and electrodes, As a result, it is found that the optimum discharge conditions are $CH_4$ concentration $CH_4$=10 %, modulated magnetic flux density B=48 Gauss, pressure P=100 mTorr, discharge power supply voltage V=l kV under these experimental conditions. By using these experimental condition, it is possible to prepare the most uniform film extends over about 160 mm of the film width. In this study, we deposited a-C:H thin film on glass substrate, and have a plan that using this condition, study depositing a-C:H thin film on polymeric substrate in next studies.

PECVD를 이용하여 증착시킨 DLC 코팅의 수소함유량에 의한 경도 특성 (The hardness property for the contents of hydrogen of DLC coating deposited by PECVD)

  • 김준형;문경일;박종완
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2011년도 춘계학술대회 및 Fine pattern PCB 표면 처리 기술 워크샵
    • /
    • pp.141-141
    • /
    • 2011
  • DLC(Diamond Like Carbon) 박막은 높은 경도, 낮은 마찰계수, 내화학성 등의 우수한 트라이볼로지적 특성을 가지고 있기 때문에 다양한 산업분야에서 적용되고 있다. 이러한 DLC 박막은 합성기구나 구조의 관점에서 몇 가지 다른 이름으로 불려지기도 한다. 밀도와 경도가 높기 때문에 경질탄소(Hard Carbon)라고도 불려지며, 수소를 함유한 경우에는 수소함유 비정질 탄소(Hydrogenated Amorphous Carbon)이라는 이름이 사용되며, 고밀도 탄소(Dense Carbon) 또는 고밀도 탄화수소(Dense Hydrocarbon)라고 불리기도 한다. 이렇듯 DLC 박막은 합성방법에 따라 함유된 수소와 탄소의 결합구조의 차이가 있다. 수소 함유한 DLC 박막은 20~50%까지 수소를 함유하며, DLC막의 기계적, 광학적, 전기적 특성들이 수소함량과 밀접한 관계를 가지고 있는 것으로 알려져 있다. 그러나 함유된 수소가 $300^{\circ}C$ 이상의 온도에서는 쉽게 결합에서 이탈되면서 흑연화와 더불어 마찰마모시 코팅층의 파손이 발생한다고 보고되고 있고, 또한 수소량이 증가함에 따라 DLC 박막의 경도는 감소하게 되는데, 이는 수소에 의해 dangling bond가 Passivation되면 탄화수소의 3차원적인 Crosslinking은 그만큼 감소하게 되기 때문이라고 알려져 있다. 본 연구에서는 PECVD를 이용하여 여러 가지 공정에 따른 DLC 박막을 증착시켰으며, 수소함유량에 따른 DLC막의 구조와 그에 따른 경도 변화를 살펴보았다. FTIR(Furier Transform Infrared Spectroscopy)과 Raman Spectroscopy을 이용하여 DLC막의 수소의 결합상태를 관찰하였으며, Nano Indentation을 사용하여 미소경도를 측정하였고, FE-SEM을 이용하여 표면과 단면을 관찰하였다. 막의 두께 측정에는 ${\alpha}$-Step을 사용하였으며, Ball-on-Disk 타입의 Tribo-meter을 이용하여, 모재의 경도에 따른 마찰계수 변화를 관찰하였다.

  • PDF

인쇄전자 롤 수명 향상을 위한 고경도 Si-DLC 코팅 기술 (The lifespan improvement of printed electronics roll by hardened Si-DLC coating materials)

  • 신의철
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 춘계학술대회 논문집
    • /
    • pp.28-28
    • /
    • 2015
  • 현재 인쇄전자 소자 생산을 위해 사용되고 있는 대부분의 그라비아 롤러는 미세 패턴의 보호와 인쇄 중 마찰에 대한 내구성을 향상시키기 위해 경질 크롬 도금 막이 사용되고 있다. 그러나 경질 크롬 도금 막의 경우 구현할 수 있는 경도(~1000 HV)와 이형성, 내마찰(마찰계수: ~ 0.6) 특성 등에 한계가 있다. 이러한 경질 크롬 도금이 적용된 그라비아 롤은 그 수명과 내구성, 구현할 수 있는 인쇄 품질 및 신뢰성 그리고 인쇄처리 속도 등에 있어 여러 문제가 있다. DLC(Diamond Like amorphous Carbon)는 낮은 마찰계수 값인 0.2 이하와 뛰어난 내마모성, 상대재료에 대한 이형성 등을 겸비한 표면강화 기술로 경질 크롬 도금막 대비 우수한 표면 경도(>1,800 HV) 특성을 갖으며, 합성된 DLC 코팅 막의 경우 정밀 인쇄 제판이 요구하는 표면거칠기를 구현할 가능성이 높다는 장점이 있다. 특히 실리콘이 첨가 된 Si-DLC의 경우 표면의 마찰계수를 0.1 이하까지 낮출 수 있는데 닥터블레이드 및 잉크, 인쇄 기재와의 마찰 훼손을 최소화시켜 그라비아 인쇄 롤의 수명을 향상시킬 수 있다. 또한 PECVD 공정을 이용하여 합성한 Si-DLC는 표면거칠기를 10nm 이하의 경면으로 구현할 수 있으며, 높은 접촉각에 의한 우수한 이형성을 통해 미세 패턴 내부에 전자잉크/페이스트가 잔류되는 현상을 억제할 수 있다. 이는 기존 경질 크롬 도금이 적용된 그라비아 롤에서 발생하는 패턴 내 잉크 잔류-고형화와 그에 의한 사용수명 단축현상을 현저히 개선시킬 수 있다.

  • PDF

슈퍼커패시터용 DAAQ/CNFs 전극의 전기화학적 특성 (Electrochemical Characteristics of DAAQ/CNFs electrode for Supercapacitor)

  • 김홍일;최원경;박수길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.1184-1187
    • /
    • 2003
  • Electrochemical capacitors are becoming attractive energy storage systems particularly for applications involving high power requirements such as hybrid systems consisting of batteries and electrochemical capacitors for electric vehicle propulsion. A new type electric double layer capacitor (EDLC) was constructed by using carbon nanofibers (CNFs) and DAAQ(1,5-diaminoanthraquinone) electrode. Carbonaceous materials are found in variety forms such as graphite, diamond, carbon fibers etc. While all the carbon nanofibers include impurities such as amorphous carbon, nanoparticles, catalytic metals and incompletely grown carbons. We have eliminated of Ni particles and some carbonaceous particles in nitric acid. Nitric acid treated CNFs could be covered with very thin DAAQ oligomer from the results of CV and TG analyses and SEM images. DAAQ oligomer film exhibited a specific capacity as 45-50 Ah/kg in 4M $H_2SO_4$. We established Process Parameters of the technique for the formation of nano-structured materials. Furthermore, improved the capacitive properties of the nano structured CNFs electrodes using controlled solution chemistry. As a result, CNFs coated by DAAQ composite electrode showed relatively good electrochemical behaviors in acidic electrolyte system with respect to specific capacity and scan rate dependency.

  • PDF

보론 도핑 여부에 따른 DLC 박막의 레이저 가공 특성 변화 연구 (A Study on the Characteristics of Laser Processing in the DLC Thin Film according to Boron Doped Content)

  • 손예진;최지연;김태규
    • 열처리공학회지
    • /
    • 제32권4호
    • /
    • pp.155-160
    • /
    • 2019
  • Diamond Like Carbon (DLC) is a metastable form of amorphous carbon that have superior material properties such as high mechanical hardness, chemical inertness, abrasion resistance, and biocompatibility. Furthermore, its material properties can be tuned by additional doping such as nitrogen or boron. However, either pure DLC or doped DLC show poor adhesion property that makes it difficult to apply contact processing technique. Therefore we propose ultrafast laser micromachining which is non-contact precision process without mechanical degradation. In this study, we developed precision machining process of DLC thin film using an ultrafast laser by investigating the process window in terms of laser fluence and laser wavelength. We have also demonstrated various patterns on the film without generating any microcracks and debris.

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AMORPHOUS HYDROGENATED DLC-COATED Ti-6Al-4V ELI ALLOY WITH TiCN INTERLAYER PREPARED BY rf-PECVD

  • KWANGMIN LEE;SEOKIL KANG
    • Archives of Metallurgy and Materials
    • /
    • 제65권4호
    • /
    • pp.1357-1360
    • /
    • 2020
  • The low adherence of diamond-like carbon (DLC) films on titanium (Ti) alloys can be improved by using interlayer coatings. In this study, DLC (a-C:H) films were deposited using radio-frequency plasma-enhanced chemical vapor deposition (rf-PECVD), and a TiCN interlayer was applied between the extra low interstitial (ELI) grade of Ti-6Al-4V alloy and a-C:H film. The characteristics of the a-C:H-coated Ti-6Al-4V ELI alloy were investigated using field emission scanning electron microscopy, Vickers hardness, and scratch and wear tests. The DLC (a-C:H) films deposited by rf-PECVD had a thickness of 1.7 ㎛, and the TiCN interlayer had a thickness of 1.1 ㎛. Vickers hardness of the DLC (a-C:H) films were increased as a result of the influence of the TiCN interlayer. The resulting friction coefficient of the a-C:H-coated Ti-6Al-4V with the TiCN interlayer had an extremely low value of 0.07.

PREPARATION OF AMORPHOUS CARBON NITRIDE FILMS AND DLC FILMS BY SHIELDED ARC ION PLATING AND THEIR TRIBOLOGICAL PROPERTIES

  • Takai, Osamu
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2000년도 추계학술발표회 초록집
    • /
    • pp.3-4
    • /
    • 2000
  • Many researchers are interested in the synthesis and characterization of carbon nitride and diamond-like carbon (DLq because they show excellent mechanical properties such as low friction and high wear resistance and excellent electrical properties such as controllable electical resistivity and good field electron emission. We have deposited amorphous carbon nitride (a-C:N) thin films and DLC thin films by shielded arc ion plating (SAIP) and evaluated the structural and tribological properties. The application of appropriate negative bias on substrates is effective to increase the film hardness and wear resistance. This paper reports on the deposition and tribological OLC films in relation to the substrate bias voltage (Vs). films are compared with those of the OLC films. A high purity sintered graphite target was mounted on a cathode as a carbon source. Nitrogen or argon was introduced into a deposition chamber through each mass flow controller. After the initiation of an arc plasma at 60 A and 1 Pa, the target surface was heated and evaporated by the plasma. Carbon atoms and clusters evaporated from the target were ionized partially and reacted with activated nitrogen species, and a carbon nitride film was deposited onto a Si (100) substrate when we used nitrogen as a reactant gas. The surface of the growing film also reacted with activated nitrogen species. Carbon macropartic1es (0.1 -100 maicro-m) evaporated from the target at the same time were not ionized and did not react fully with nitrogen species. These macroparticles interfered with the formation of the carbon nitride film. Therefore we set a shielding plate made of stainless steel between the target and the substrate to trap the macropartic1es. This shielding method is very effective to prepare smooth a-CN films. We, therefore, call this method "shielded arc ion plating (SAIP)". For the deposition of DLC films we used argon instead of nitrogen. Films of about 150 nm in thickness were deposited onto Si substrates. Their structures, chemical compositions and chemical bonding states were analyzed by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and infrared spectroscopy. Hardness of the films was measured with a nanointender interfaced with an atomic force microscope (AFM). A Berkovich-type diamond tip whose radius was less than 100 nm was used for the measurement. A force-displacement curve of each film was measured at a peak load force of 250 maicro-N. Load, hold and unload times for each indentation were 2.5, 0 and 2.5 s, respectively. Hardness of each film was determined from five force-displacement curves. Wear resistance of the films was analyzed as follows. First, each film surface was scanned with the diamond tip at a constant load force of 20 maicro-N. The tip scanning was repeated 30 times in a 1 urn-square region with 512 lines at a scanning rate of 2 um/ s. After this tip-scanning, the film surface was observed in the AFM mode at a constant force of 5 maicro-N with the same Berkovich-type tip. The hardness of a-CN films was less dependent on Vs. The hardness of the film deposited at Vs=O V in a nitrogen plasma was about 10 GPa and almost similar to that of Si. It slightly increased to 12 - 15 GPa when a bias voltage of -100 - -500 V was applied to the substrate with showing its maximum at Vs=-300 V. The film deposited at Vs=O V was least wear resistant which was consistent with its lowest hardness. The biased films became more wear resistant. Particularly the film deposited at Vs=-300 V showed remarkable wear resistance. Its wear depth was too shallow to be measured with AFM. On the other hand, the DLC film, deposited at Vs=-l00 V in an argon plasma, whose hardness was 35 GPa was obviously worn under the same wear test conditions. The a-C:N films show higher wear resistance than DLC films and are useful for wear resistant coatings on various mechanical and electronic parts.nic parts.

  • PDF