• Title/Summary/Keyword: amorphous Fe

Search Result 574, Processing Time 0.024 seconds

Effect of Heat Treatment on The Magnetic Properties of FeSiB Thin Film (열처리가 FeSiB 연자성 박막의 자기특성에 미치는 영향)

  • Hong, Jong-Wook;Jang, Tae-Suk;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.12 no.11
    • /
    • pp.880-882
    • /
    • 2002
  • We have prepared magnetic thin films of FeSiB by sputtering and examined microstructure and magnetic properties of the annealed films in order to investigate the feasibility of the films to microsensor application. Effects of vacuum annealing on the magnetic properties of $Fe_{84}$$Si_{6}$$B_{10}$ films have been examined as a function of temperature. The heating rate and the holding time were 10 K/min and 1 hour, respectively. Vacuum condition was held during cooling to prevent oxidation of the films. The coercivity did not show any noticeable change (~1500 A/m), although the grain size of the crystalline phase in the annealed films increased gradually up to about 16 nm until 673 K. However, both the grain size and the coercivity increased steeply when the annealing temperature increased over 723 K. Since the saturation magnetization is closely related to the phase evolution, the variation of the saturation magnetization of the annealed films was similar to that of the ribbon materials; the thin films were transformed from amorphous to crystalline with $\alpha$-(Fe,Si) phase by increasing annealing temperature.

Structural Characterization of CoCrFeMnNi High Entropy Alloy Oxynitride Thin Film Grown by Sputtering (스퍼터링 방법으로 성장한 코발트크롬철망간니켈 고엔트로피 질산화물 박막의 구조특성)

  • Lee, Jeongkuk;Hong, Soon-Ku
    • Korean Journal of Materials Research
    • /
    • v.28 no.10
    • /
    • pp.595-600
    • /
    • 2018
  • This study investigates the microstructural properties of CoCrFeMnNi high entropy alloy (HEA) oxynitride thin film. The HEA oxynitride thin film is grown by the magnetron sputtering method using nitrogen and oxygen gases. The grown CoCrFeMnNi HEA film shows a microstructure with nanocrystalline regions of 5~20 nm in the amorphous region, which is confirmed by high-resolution transmission electron microscopy (HR-TEM). From the TEM electron diffraction pattern analysis crystal structure is determined to be a face centered cubic (FCC) structure with a lattice constant of 0.491 nm, which is larger than that of CoCrFeMnNi HEA. The HEA oxynitride film shows a single phase in which constituting elements are distributed homogeneously as confirmed by element mapping using a Cs-corrected scanning TEM (STEM). Mechanical properties of the CoCrFeMnNi HEA oxynitride thin film are addressed by a nano indentation method, and a hardness of 8.13 GPa and a Young's modulus of 157.3 GPa are obtained. The observed high hardness value is thought to be the result of hardening due to the nanocrystalline microstructure.

Structure and Magnetic Characterization of Core-Shell Fe@ZrO2 Nanoparticles Synthesized by Sol-Gel Process

  • Chaubey, Girija S.;Kim, Jin-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2279-2282
    • /
    • 2007
  • Highly crystalline, uniform Fe nanoparticles were successfully synthesized and encapsulated in zirconia shell using sol-gel process. Two different approaches have been employed for the coating of Fe nanoparticle with zirconia. The thickness of zirconia shell can be readily controlled by altering molar ratio of Fe nanoparticle core to zirconia precursor in the first case where as reaction time was found to be most effective parameter to controlled the shell thickness in the second method. The structure and magnetic properties of the ZrO2-coated Fe nanoparticles were studied. TEM and HRTEM images show a typical core/shell structure in which spherical α-iron crystal sized of ~25 nm is surrounded by amorphous ZrO2 coating layer. TGA study showed an evidence of weight loss of less than 2% over the temperature range of 50-500 °C. The nanoparticles are basically in ferromagnetic state and their magnetic properties depend strongly on annealing temperature. The thermal treatment carried out in as-prepared sample resulted in reduction of coercivity and an increase in saturation magnetization. X-ray diffraction experiments on the samples after annealing at 400-600 °C indicate that the size of the Fe@ZrO2 particles is increased slightly with increasing annealing temperature, indicating the ZrO2 coating layer is effective to interrupt growing of iron particle according to heat treatment.

Effects of Edta on the Electronic Properties of Passive Film Formed on Fe-20Cr In pH 8.5 Buffer Solution

  • Cho, EunAe;Kwon, HyukSang;Bernard, Frederic
    • Corrosion Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.171-177
    • /
    • 2003
  • The electronic properties of the passive film formed on Fe-20Cr ferritic stainless steel in pH 8.5 buffer solution containing 0.05 M EDTA (ethylene diammine tetraacetic acid) were examined by the photocurrent measurements and Mott-Schottky analysis for the film. XPS depth profile for the film demonstrated that Cr content in the outermost layer of the passive film was higher in the solution with EDTA than that in the solution without EDTA, due to selective dissolution of Fe by EDTA. In the solution with EDTA, the passive film showed characteristics of an amorphous or highly disordered n-type semiconductor. The band gap energies of the passive film are estimated to be ~ 3.0 eV, irrespective of film formation potential from 0 to 700 $mV_SCE$ and of presence of EDTA. However, the donor density of the passive film formed in the solution with EDTA is much higher than that formed in the solution without EDTA, due to an increase in oxygen vacancy resulted from the dissolution of Fe-oxide in the outermost layer of the passive film. These results support the proposed model that the passive film formed on Fe-20Cr in pH 8.5 buffer solution mainly consists of Cr-substituted $\gamma$-$Fe_2O_3$.

SOFT MAGNETISM OF Co-Zr AND Fe-Co FILMS WITH LARGE SATURATION MAGNETIZATION

  • Suemitsu, Katsumi;Nakagawa, Shigeki;Naoe, Masahiko
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.628-633
    • /
    • 1996
  • Large saturation magnetization $4pM_s$ is essentially required for soft magnetic thin layers used in magnetic recording devices. Amorphous Co-based alloys and Fe-Co alloys may be regarded as one of the candidates for soft magnetic materials which possess large $4\piM_s$. Some preparation process to improve soft magnetism of these films were performed in this study. Addition of Ta seemed to be effective to change the magnetostriction constant $\lambda$ from positive value to negative one. The magnetoelastic energy $K_e$ is strongly dependent on $\lambda$. $(Co_{95.7}Zr_{4.3})_{100-x}Ta_x$ films with $K_e$ of negative value have sufficiently soft magnetic characteristics. $Fe_{90}Co_{10}$ alloy exhibits extremely large $4\piM_s$, of about 24 kG. Addition of N and Ta to $Fe_{90}Co_{10}$ films improved the soft magnetism of them. The $Fe_{82.0}Co_{7.6}Ta_{10.4}$:N/Ti multilayered films exhibit better soft magnetic properties and better thermal stability than Fe-Co-Ta:N singlelayer films.

  • PDF

Effect of Aging Coprecipitate on the Synthesis Process of Ba-Ferrite (공심물의 숙성이 Ba-Ferrite의 합성과정에 미치는 영향)

  • 김태옥;김은동
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.4
    • /
    • pp.340-346
    • /
    • 1983
  • The effect of aging coprecipitate obtained by the reaction of mixed solution 1.1 mol FeCl-0.1 mol $BaCl_2$ and 4.0 mol. NaOH-1.0 mol $K _2 CO_3$ on the synthesis process of Baferrite $(BaFe_{12}O_{19})$ was investigated by means of DTA, TGA, XRD and electron microscope. The no-aged coprecipitate seems to be the aggregate of amorphosus $Fe_3$ .$nH_2O$ and (1-X) $BaCO_3$.$xBa(OH)_2$, but the 30 days-aged to be composed of crystalline $Fe_2O_3H_2O$ and $BaCO_3$. The decomposition temperature of $BaCO_3$ in the coprecipitate increases from 400-$700^{\circ}C$ to 700-90$0^{\circ}C$ with increment of aging-time. In the no-aged coprecipitate Ba-ferrite is synthesized through the surface reaction of amorphous Fe_2O_3$ and skeleton crystal BaO at 800-90$0^{\circ}C$ with more compact crystalization. During calcination of the 30 days-aged coprecibitate the intermediate phase BaFe_2O_4$ is formed at 600-$700^{\circ}C$ and completely transformed to Ba-ferrite at 800-90$0^{\circ}C$.

  • PDF

Structural Analysis and Magnctic Propcrics of Amorphous $Fe_{78}Si_{9}B_{13}$ Alloy (비정질 $Fe_{78}Si_{9}B_{13}$ 합금의 구조와 자성 연구)

  • 이희복;송인명;유성초;임우영
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.3
    • /
    • pp.179-184
    • /
    • 1993
  • The X-ray diffraction pattern of amorphous $Fe_{78}Si_{9}B_{13}$ alloy was analyzed to obtain the radial distribution function (RDF) where the first peak was in the form of Gaussian function. The calculated coordination number of the form of Gaussian functiono The calculated coordination number of the sample is 13.5, the mean distance betweeon near-neighbor atoms $r_{0}$ is $2.595{\AA}$ and a Gaussian parametet ${\delta}r$ indicating near-neighbor atomic distri-bution is $0.27{\AA}$. The temperature dependence of saturated magnetization at low temperature could be explained by spin wave excitations theory yielding the spin wave stiffness constant as $117.8\;meV\;{\AA}^2$. Also, we tried to fit the observed temperature dependence of saturated magnetization with the Handrich's equation of the modified molecular field theory for the amorphous ferromagnet. Nice fittings are obtained when we used the parameters ${\Delta}=0.32$(S=1/2) and ${\Delta}=0.23$(S=1), respectively. Finally, the calculated spin wave stiffness constant using the parameters and the structural data are $149\;meV\;{\AA}^2$ for S=1/2 and $138\;meV\;{\AA}^2$ for S=1, respectively. The mean exchange coupling integral between near-neighbor atoms was estimated to be 17.9 meV for S=1/2 and 6.7 meV for S=1.

  • PDF

Characterization of the Kaolinite Synthesized According to the pH. (pH에 따른 캐올리나이트 합성과 특성 분석)

  • Ryu, Gyoung-Won;Jang, Young-Nam;Bae, In-Kook;Suh, Yong-Jae
    • Economic and Environmental Geology
    • /
    • v.41 no.2
    • /
    • pp.165-172
    • /
    • 2008
  • Kaolinite [$Al_2Si_2O_5(OH)_4$] used in these experiments was synthesized at 250$^{\circ}C$ for 36 hrs by a hydrothermal process from amorphous $Al(OH)_3$ and $SiO_2$. The change of the mineralogical properties of the phase synthesized were observed in the pH range 2 to 9. The synthetic kaolinite were characterized by the analytical methods of XRD, IR, DIA, and FE-SEM. Kaolinite was obtained in a wide range of pH. The phases with high- to midium- defect kaolinite with high thermal stability were obtained from the acidic conditions and high-defect kaolinite with low thermal stability from the basic conditions. These variations of kaolinite properties appears to be related to the pH dependence of kaolinite surface speciation. The peaks intensity and resolution of the kaolinite decrease according to the alkalinity of the solution by the results of the IR testing. And the peak intensity increases in the 60 to 70$^{\circ}C$ range due to dehydration reaction observed by TG-DTA. Such phenomena was the result of increase of unreacted amorphous materials in the high pH condition, which could be identified by FE-SEM.

High Sensitive Strain Detection of FeCoSiB Amorphous Films (아몰퍼스 FeCoSiB 박막의 고감도 스트레인 검출특성)

  • Shin, Kwang-Ho;Arai, Ken-Ichi;SaGong, Geon
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.22-27
    • /
    • 2000
  • Amorphous FeCoSiB films with high saturation magnetostriction and excellent soft magnetic properties have been studied to evaluate their strain sensitivity. Films were subjected to a strain by bending of their substrates, which caused a change in the magnetic anisotropy of films via magnetoelastic coupling. Films were exhibited a figure of merit $F=({\Delta}{\mu}/{\mu})/{\varepsilon}$ (change in film permeability $\mu$ per unit strain $\varepsilon$) of $1.2{\times}10^5$, which is comparable with that of amorphous ribbons. To make a study of application of magnetostrictive films as strain sensor elements, we have prepared a micro-patterned film by means of the photolithography and ion milling processes. Impedance change in the patterned films, when strain was applied, was measured over the frequency range from 1 MHz to 1 GHz. Reflecting a large value of figure of merit F, a variation of 46% impedance of films was shown at 100 MHz frequency when a strain of $300{\times}10^{-6}$ was applied.

  • PDF

NiSO4 Supported on FeO-promoted ZrO2 Catalyst for Ethylene Dimerization

  • Sohn, Jong-Rack;Kim, Young-Tae;Shin, Dong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1749-1756
    • /
    • 2005
  • The $NiSO_4$ supported on FeO-promoted $ZrO_2$ catalysts were prepared by the impregnation method. FeOpromoted $ZrO_2$ was prepared by the coprecipitation method using a mixed aqueous solution of zirconium oxychloride and iron nitrate solution followed by adding an aqueous ammonia solution. The addition of nickel sulfate (or FeO) to $ZrO_2$ shifted the phase transition of $ZrO_2$ (from amorphous to tetragonal) to higher temperatures because of the interaction between nickel sulfate (or FeO) and $ZrO_2$. 10-$NiSO_4$/5-FeO-$ZrO_2$ containing 10 wt % $NiSO_4$ and 5 mol % FeO, and calcined at 500 ${^{\circ}C}$ exhibited a maximum catalytic activity for ethylene dimerization. $NiSO_4$/FeO-$ZrO_2$ catalysts was very effective for ethylene dimerization even at room temperature, but FeO-$ZrO_2$ without $NiSO_4$ did not exhibit any catalytic activity at all. The catalytic activities were correlated with the acidity of catalysts measured by the ammonia chemisorption method. The addition of FeO up to 5 mol % enhanced the acidity, surface area, thermal property, and catalytic activities of catalysts gradually, due to the interaction between FeO and $ZrO_2$ and due to consequent formation of Fe-O-Zr bond.