• Title/Summary/Keyword: amorphous Carbon

Search Result 452, Processing Time 0.029 seconds

Deposition of Amorphous Carbon Layer by PECVD (PECVD에 의한 비정질 탄소층 증착)

  • Jung, Ilhyun
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.322-325
    • /
    • 2008
  • 3,3-Dimethyl-1-butene ($C_6H_{12}$) monomer was deposited using a plasma-enhanced chemical vapor deposition (PECVD) instrument. The more the R.F. power/pressure ratio in FT-IR spectrum, the less the hydrogen quantity and the dangling bond in amorphous carbon films observed so that the mechanical property of the films are improved related to the density. Also, with the increase D peak in Raman spectrum is increased and the ring structure's films are produced. According to these results, hardness and modulus are 12 GPa and 85 GPa, respectively. The refractive index (n) and extinction coefficients (k) of the deposited films are increased with the increase in a power/pressure ratio.

Characteristics of Hydrogenated Amorphous Carbon (a-C:H) Thin Films Grown by Close Field UnBalanced Magnetron Sputtering Method (비대칭 마그네트론 스퍼터링법으로 성장된 a-C:H의 물리적 특성)

  • 박용섭;홍병유
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.278-282
    • /
    • 2004
  • The Hydrogenated amorphous carbon(a-C:H) thin films are deposited on silicon with a close field unbalanced magnetron(CFUBM) sputtering systems. The experimental data are obtained on the depositon rate and physical properties of a-C:H films using DC bias voltage and Ar/C$_2$H$_2$ pressure. The depostion rate and the surface roughness decrease with DC bias voltage, but the hardness of the thin films increases with DC bias voltage. And the position of G-peak moves to lower wavenumber indicating an increase in diamond-like carbon characteristics with the lower Ar/C$_2$H$_2$ pressure.

Improvement of field emission character by surface treatment of carbon thin film (탄소계 박막의 표면 처리에 의한 전계전자방출 특성의 개선)

  • ;K.-Y. Lee;S.-I. Honda;M. Katayama;;K. Oura
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.147-150
    • /
    • 2002
  • The electron field emission properties of amorphous carbon (a-C) films deposited using a RF magnetron sputtering system have been improved by introducing a simple method of argon plasma treatment at room temperature. Surface morphologies and structural properties of the a-C films were investigated by scanning electron microscopy and Raman spectroscope, respectively. Structural properties and surface morphologies of the a-C films were changed by argon plasma treatment. The emission properties improved with the plasma treatment.

  • PDF

A study of properties of DLC films for membrane structure (멤브레인 구조를 위한 DLC 박막의 특성에 관한 연구)

  • Lee, Tae-Yong;Kim, Eung-Kwon;Park, Yong-Seob;Hong, Byung-You;Song, Joon-Tae;Park, Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.748-752
    • /
    • 2004
  • The Hydrogenated amorphous carbon (a-C:H) thin films are deposited to fabricate suppored layer on silicon substrate with a closed field unbalanced magnetron(CFUBM) sputtering system. This study focuses on the characteristic of Diamond like carbon (DLC) films and Pb(Zr,Ti)$O_3$ (PZT) films for membrane structure. The deposition rate and the surface roughness of DLC fims decrease with DC bias voltage. hardness is 26 GPa at -200 V. Interface of DLC/Si and Pt/DLC layers was excellent.

  • PDF

Physical and Structural Properties of Amorphous Carbon Films Synthesized by Magnetron Sputtering Method (마그네트론 스퍼터링법에 의해 합성되어진 비정질 탄소박막들의 구조적, 물리적 특성)

  • Park, Yong-Seob;Cho, Hyung-Jun;Hong, Byung-You
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.2
    • /
    • pp.122-127
    • /
    • 2007
  • In this research, amophous carbon films (a-C, a-C:H, a-C:N) were synthesized by closed-field unbalanced magnetron (CFUBM) sputtering using graphite target. We also fabricated amorphous carbon films with applying negative DC bias voltage of 200 V in during the deposition in working pressure. Also, a-C:H and a-C:N films was synthesized by adding acethylene($C_{2}H_{2}$) and nitrogen(N) gases of 4 and 3 sccm into Ar pressure. The a-C:H film synthesized at -200 V exhibited the maxumum hardness of 26.3 GPa, the smooth surface of 0.1 nm and the good adhesion of 30.5 N. And a-C:N film synthesized at -200 V exhibited at -200 V exhibited the best adhesion of 32 N. This paper examined the effect of $C_{2}H_{2}$ gas, $N_{2}$ gas and negative DC bias voltage as the parameter for improving the physical properties and the relation between structral and physical properties of carbon films.

The Effect of Remelting Cycles and Its Carbon Content on the Glass Forming Ability and Mechanical Properties of the Zr-based Amorphous Alloy Return Scrap (Zr 기지 비정질 합금 스크랩의 비정질 형성능 및 기계적 성질에 미치는 재용해 횟수와 탄소 함량의 영향)

  • Lee, Byung-Chul;Kim, Sung-Gyoo;Park, Bong-Gyu;Park, Heung-Il;Park, Hwa-Soon
    • Journal of Korea Foundry Society
    • /
    • v.34 no.3
    • /
    • pp.94-99
    • /
    • 2014
  • A commercially used Zr-based amorphous alloy was recycled and the effects of introducing carbon during recycling on the glass forming ability and mechanical properties of the alloy were investigated. The initial carbon content used in this study was 229ppm. The carbon content was gradually increased as the number of recycling iterations was increased and after the $4^{th}$ recycling it rapidly increased. As return scrap was recycled, polygonal particles precipitated, and they were identified as ZrC. The amount of the precipitates also increased with recycling. Tg, Tx and ${\Delta}T$ of the base alloy were 615 K, 696 K and 81 Kr respectively and they changed to 634 K, 706 K and 72 K after the $10^{th}$ recycling. The decrease of the ${\Delta}T$ value indicates deterioration of the glass forming ability. Hardness was not changed during three iterations of recycling but after the $4^{th}$ recycling it significantly increased. This is ascribed to an increase of amount of the hard particles, namely ZrC.

A Study on the Synthesis and Characterization of Carbon Nitride Thin Films by Magnetron Sputter (마그네트론 스퍼터에 의한 Carbon Nitride 박막의 합성 및 특성에 관한 연구)

  • Park, Gu-Bum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.3
    • /
    • pp.107-112
    • /
    • 2003
  • Amorphous carbon nitride thin films have been deposited on silicon (100) by reactive magnetron sputtering method. The basic depositon parameters varied were the r.f. power(up to 250 W), the deposition pressure in the reactor(up to 100 mtorr) and Ar:$N_2$ gas ratio. FT-IR and X-ray photoelectron spectra showed the presence of different carbon-nitrogen bonds in the films. The surface topography of the films was studied by scanning electron microscopy(SEM) and atomic force microscopy(AFM).

Optimization of tetrahedral amorphous carbon (ta-C) film deposited with filtered cathodic vacuum arc through Taguchi robust design (다구찌 강건 설계를 통한 자장 여과 아크 소스로 증착된 사면체 비정질 탄소막의 최적화)

  • Kwak, Seung-Yun;Jang, Young-Jun;Ryu, Hojun;Kim, Jisoo;Kim, Jongkuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.2
    • /
    • pp.53-61
    • /
    • 2021
  • The properties of tetrahedral amorphous Carbon (ta-C) film can be determined by multiple parameters and comprehensive effects of those parameters during a deposition process with filtered cathodic vacuum arc (FCVA). In this study, Taguchi method was adopted to design the optimized FCVA deposition process of ta-C for improving deposition efficiency and mechanical properties of the deposited ta-C thin film. The influence and contribution of variables, such as arc current, substrate bias voltage, frequency, and duty cycle, on the properties of ta-C were investigated in terms of deposition efficiency and mechanical properties. It was revealed that the deposition rate was linearly increased following the increasing arc current (around 10 nm/min @ 60 A and 17 nm/min @ 100A). The hardness and ID/IG showed a correlation with substrate bias voltage (over 30 GPa @ 50 V and under 30 GPa @ 250 V). The scratch tests were conducted to specify the effect of each parameter on the resistance to plastic deformation of films. The analysis on variances showed that the arc current and substrate bias voltage were the most effective controlling parameters influencing properties of ta-C films. The optimized parameters were extracted for the target applications in various industrial fields.

A Study on the Discharge Characteristics of Cylindrical Sputtering Apparatus and Microstructure (원통형 마그네트론 스퍼터링 장비의 방전특성과 박막구조에 관한 연구)

  • Oh, Chang-Sup;Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • The purpose of this study is to prepare a high strength fiberglass reinforced metal. Aluminum covering was carried out over carbon materials such as carbon fiber in order to increase their wettability to molten metals such as aluminum. A sputtering apparatus with a cylindrical target was fabricated to carry out the covering. Sputtering was caused by glow discharge between the target and the two anode plates attached to its top and bottom. As the substrate for preliminary test, a thin carbon wire was used instead of carbon fiber, and the wire was placed at the central axis of the target. Aluminium coating was formed on the whole surface of the substrate. The formation rate and structure of coating were varied by controlling the electrical potential of substrate. When the substrate was electrically isolated, coating with columnar structure was formed with a formation rate of $15{\mu}m/hr$. In case of grounded substrate, coating with amorphous structure was formed with a formation rate of $7{\mu}m/hr$.