• Title/Summary/Keyword: ammonia volatilization

Search Result 48, Processing Time 0.019 seconds

Effect of pyroligneous acids on urease inhibition (요소분해 저해에 미치는 목초액의 영향 평가)

  • Park, Hyun Jun;Park, Jin Hee
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.2
    • /
    • pp.173-178
    • /
    • 2017
  • This study was conducted to investigate the effect of pyroligneous acids on urea hydrolysis for the purpose of inhibiting ammonia volatilization during urea fertilizer application. Different types of synthetic urease inhibitors have been searched and developed, but their use is limited due to varying inhibition effects on soil urease, and environmental problems. In this study, the effect of pyroligneous acids, a natural substance, on urea hydrolysis in soil was evaluated by analyzing inhibition of urease activity. Pyroligneous acids inhibited plant urease and microbial urease activity, as well as soil urease with various urease complex. In addition, pyroligneous acids exhibited non-competitive urease inhibition effect through urease kinetics and inhibited urea hydrolysis in the soil. This study showed that pyroligneous acids treatment with urea fertilizer decreases the loss of urea fertilizer, improves the efficiency of nitrogen application on plant and reduces the amount of nitrogen fertilizers applied in soil.

Effect of Mixed Treatment of Nitrogen Fertilizer and Zeolite on Soil Chemical Properties and Growth of Hot Pepper

  • Park, Jun-Hong;Park, Sang-Jo;Kwon, Oh-Heun;Choi, Seong-Yong;Park, So-Deuk;Kim, Jang-Eok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.1
    • /
    • pp.44-49
    • /
    • 2015
  • Urea has been the most useful N-source, due to lower cost per unit of N. But nitrogen use efficiency of urea may be reduced because of losses from agricultural system by volatilization of ammonia to atmosphere. This study was conducted to evaluate the nitrogen efficiency and growth of hot pepper (Capsicum annuum L.) by mixed treatment with nitrogen and zeolite. They were treated with N $161kg\;ha^{-1}$, N $230kg\;ha^{-1}$, nitrogenzeolite mixture (NZM) $161kg\;ha^{-1}$, NZM $230kg\;ha^{-1}$ and N $0kg\;ha^{-1}$, respectively. In the soil chemical properties after experiment, soil pH decreased but available $P_2O_5$, EC and total nitrogen increased in nitrogen-zeolite mixture treatment. $NO_3-N$ content in the soil showed the highest level in NZM $230kg\;ha^{-1}$. NZM $161kg\;ha^{-1}$ treatment increased growth and yield of hot pepper compared to urea alone. Nitrogen utilization efficiency of hot pepper plant was 47.15% at the treatment of NZM $161kg\;ha^{-1}$, while 36.74% at N $230kg\;ha^{-1}$. These results showed that application of mixture of nitrogen and zeolite had positive influence to improve the efficiency of nitrogen utilization and increase of red pepper yield.

Case Study of N Deficiency Symptom of Strawberry in the Soil Applied with Sea Deposit Compost (바다부유물질로 만든 퇴비를 시용한 토양에서 발생한 딸기의 질소결핍증 해결 사례연구)

  • Kim, Yoo-Hak;Kim, Myung-Sook;Kang, Seong-Soo;Yoon, Sung-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1023-1026
    • /
    • 2011
  • Nitrogen content in soil is a major factor for the crop growth. Ammonium nitrogen in soils is volatilized when soil pH is high. The growth and development problem of strawberry such as color of leaves turning into purple was found when soils were treated with the compost prepared from suspended solids of high pH from the sea. From in-situ analysis it was found that soil pH was 8.33 and nitrate, phosphorous, and potassium contents were relatively low. Nitric acid was added to adjust pH of irrigating water as 1.7, 1.9, and 2.3, then $KNO_3$ $0.25g\;L^{-1}$ and $KH_2PO_4$ $0.25g\;L^{-1}$ were added. It was resulted that soils with pH 1.7 produced the most developed strawberries. Strawberry was recovered by irrigation containing the same solution. From the results, the growth and development problem of the strawberry resulted from low nitrate absorption rate. It was concluded that the growth and development of strawberries were recovered by the reduced soil pH using nitric acid.

A case study on monitoring the ambient ammonia concentration in paddy soil using a passive ammonia diffusive sampler (논 토양에서 암모니아 배출 특성 모니터링을 위한 수동식 암모니아 확산형 포집기 이용 사례 연구)

  • Kim, Min-Suk;Park, Minseok;Min, Hyun-Gi;Chae, Eunji;Hyun, Seunghun;Kim, Jeong-Gyu;Koo, Namin
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.1
    • /
    • pp.100-107
    • /
    • 2021
  • Along with an increase in the frequency of high-concentration fine particulate matter in Korea, interest and research on ammonia (NH3) are actively increasing. It is obvious that agriculture has contributed significantly to NH3 emissions. However, studies on the long-term effect of fertilizer use on the ambient NH3 concentration of agricultural land are insufficient. Therefore, in this study, NH3 concentration in the atmosphere of agricultural land was monitored for 11 months using a passive sampler. The average ambient NH3 concentration during the total study period was 2.02 ㎍ m-3 and it was found that the effect of fertilizer application on the ambient NH3 concentration was greatest in the month immediately following fertilizer application (highest ambient NH3 concentration as 11.36㎍ m-3). After that, it was expected that the NH3 volatilization was promoted by increases in summer temperature and the concentration in the atmosphere was expected to increase. However, high NH3 concentrations in the atmosphere were not observed due to strong rainfall that lasted for a long period. After that, the ambient NH3 concentration gradually decreased through autumn and winter. In summary, when studying the contribution of fertilizer to the rate of domestic NH3 emissions, it is necessary to look intensively for at least one month immediately after fertilizer application, and weather information such as precipitation and no-rain days should be considered in the field study.

Influence of a chemical additive on the reduction of highly concentrated ammonium nitrogen(NH4+-N) in pig wastewater (양돈 폐수로부터 고농도 암모니아성 질소의 감소를 위한 화학적 첨가제의 영향)

  • Su Ho Bae;Eun Kim;Keon Sang Ryoo
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.3
    • /
    • pp.267-274
    • /
    • 2022
  • Excess nitrogen (N) flowing from livestock manure to water systems poses a serious threat to the natural environment. Thus, livestock wastewater management has recently drawn attention to this related field. This study first attempted to obtain the optimal conditions for the further volatilization of NH3 gas generated from pig wastewater by adjusting the amount of injected magnesia (MgO). At 0.8 wt.% of MgO (by pig wastewater weight), the volatility rate of NH3 increased to 75.5% after a day of aeration compared to untreated samples (pig wastewater itself). This phenomenon was attributed to increases in the pH of pig wastewater as MgO dissolved in it, increasing the volatilization efficiency of NH3. The initial pH of pig wastewater was 8.4, and the pH was 9.2 when MgO was added up to 0.8 wt.%. Second, the residual ammonia nitrogen (NH4+-N) in pig wastewater was removed by precipitation in the form of struvite (NH4MgPO4·6H2O) by adjusting the pH after adding MgO and H3PO4. Struvite produced in the pig wastewater was identified by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) analysis. White precipitates began to form at pH 6, and the higher the pH, the lower the concentration of NH4+-N in pig wastewater. Of the total 86.1% of NH4+-N removed, 62.4% was achieved at pH 6, which was the highest removal rate. Furthermore, how struvite changes with pH was investigated. Under conditions of pH 11 or higher, the synthesized struvite was completely decomposed. The yield of struvite in the precipitate was determined to be between 68% and 84% through a variety of analyses.

Causes of Nitrogen Loss during Animal Manure Analysis (가축분의 정량과정에서 생기는 질소 손실에 대한 여러 원인)

  • Nahm, K.H.
    • Korean Journal of Poultry Science
    • /
    • v.28 no.3
    • /
    • pp.215-224
    • /
    • 2001
  • Since nitrogen(N) is a volatile compound affected by many environmental factors, determining the N content of manure tends to be difficult. Upon arrival in the laboratory, the manure should be moist and refrigerated. Manure samples will have variable N contents due to drying temperature, and the presence of soil in the sample will affect N content. Acidification of the sample prevents ammonia volatilization and should be done before drying. It is recommended that manure samples be pretreated with a strong oxidizing agent, KMnO$_4$, followed by digestion under reduced conditions (reduced Fe-$H_{2}$ $SO_{4}$ ), which achieves a complete recovery of both $NO_{3}$ -N and $NO_{2}$ -N without a low recovery of $NH_{4}$ -N, resulting in a more accurate determination of N content. Accuracy of results for N content determined by recently developed rapid analysis techniques in the field should be tested by comparison with results obtained at laboratories using approved standard methods. Most commonly, the Kjeldahl system is used to determine manure N content. More research is needed on the effects of species, breed, age and individuals on the nutrient contents of manure. The procedures for manure sampling on the farm, shipping and handling of the sample until it reaches the laboratory, and the methods of sampling of the manure at the laboratory must be studied. Development of animal agricultural laboratories where feed, manure, soil, and water are all analyzed by appropriate specialists is needed.

  • PDF

Dynamics of Nitrogen in Poultry Manure during its Processing (계분(鷄糞)의 부숙건조(腐熟乾燥)와 질소(窒素)의 행동(行動))

  • Oh, Wang-Keun
    • Korean Journal of Environmental Agriculture
    • /
    • v.3 no.1
    • /
    • pp.57-62
    • /
    • 1984
  • Laboratory experiments of poultry manure incubated for three days at $35^{\circ}$ were conducted to learn some informations on the relief of nitrogen loss during processing. Results obtained are as follows: 1) Blending phosphoric acid, triplesuperphosphate or superphosphate to poultry manure could reduce the volatilization of ammonia and saved nitrogen in the manure by 80 to 90 percent, though nonblending saved the nitrogen only by 40 to 60 percent during three days incubation. 2) The additives must be blended thoroughly to the manure to obtain the least loss of nitrogen during the incubation. 3) The severe loss of nitrogen was occurred from the drying process of fermented manure of both treatment, that is $60{\sim}80$ percent loss at the blended treatment with phosphoric acid, triplesuperphosphate or superphosphate, and $70{\sim}90$ percent loss at non-blended. 4) Drying the fermented manure under the fixed temperature of about $65^{\circ}$ for three days saved more nitrogen than dried manure under the temperature gradually raised from the room temperature to about $45{\sim}65^{\circ}$ for three days.

  • PDF

Effect of Soil Salinity on Nitrogen Mineralization of Livestock Manure Compost in Salt-Affected Coastal Soils

  • Kim, Jung-Hyun;Shim, Myung-Yong;Moon, Tae-Il;Kim, Seung-Hwan;Shin, Kook-Sik;Sonn, Yeon-Kyu;Chung, Doug-Young;Lee, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.3
    • /
    • pp.199-204
    • /
    • 2014
  • We conducted a short-term incubation experiment in order to understand the effect of the salinity of reclaimed coastal soils on nitrogen mineralization of livestock manure compost (LMC). Two soils with the same soil texture but different EC levels were collected from the same field. These samples were treated with 0%, 1%, 2%, and 3% of LMC by weight basis and incubated at $25^{\circ}C$ to observe changes in inorganic N contents, pH, and dehydrogenase activity with respect to time. As a result, regardless of the soil EC level, as the LMC increased, the total content of the inorganic N ($NH_4{^+}+NO_3{^-}$) increased. Difference in the soil EC level did not affect N mineralization of LMC greatly. The soil EC had negligible effect on the dehydrgenase activity as with the case of inorganic nitrogen. The $NH_4{^+}$ contents remained very low throughout the experimental period starting from the first week of incubation. We believe this is due to the high pH level (pH 7.9 and pH 8.3) of the original soils leading to ammonia volatilization. On the other hand the $NO_3{^-}$ content maintained high level as the LMC treatment level increased and reached maximum at the third week. The pH of the soil during incubation period decreased as the $NO_3{^-}$ contents increased and increased slightly after three weeks. The rise of pH level is believed to be from the $NO_3{^-}$ absorption for immobilization by microbes. In conclusion, the high soil $EC_{1:5}$ level of $12dS\;m^{-1}$ conducted in this experiment did not affect the growth in terms of soil microbes involved in N mineralization of LMC.