• Title/Summary/Keyword: ammonia solution

Search Result 366, Processing Time 0.025 seconds

Preparation and Comparison of Proteus mirabilis and Citrobacter freundii Bacterial Electrodes for the Determination of Cytosine (Cytosine 정량을 위한 Proteus mirabilis와 Citrobacter freundii 박테리아전극의 개발과 그 비교)

  • Gwon Shik Ihn;Bong Weon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.333-341
    • /
    • 1988
  • The bio-electrode for cytosine has been constructed by immobilizing Proteus mirabilis and Citrobacter freundii on an ammonia gas-sensor. Bacteria containing cytosine deaminase convert one molecule of cytosine into one molecule of ammonia. The Proteus mirabilis bacterial electrode showed linear response to cytosine concentration in the $1.0{\times}10^{-3}\;-\;5.0{\times}10^{-2}$M with a slope of 45-48 mV/decade in 0.2 M phospbate buffer solution at pH 8.4. The Citrobacter freundii bacterial electrode showed linear response to cytosine concentration in the $7.0{\times}10^{-5}\;-\;7.0{\times}10^{-3}$M with a slope of 48 mV/decade in 0.05M phosphate buffer solution at pH 7.6. These electrode were investigated for the effects of pH, temperature, buffer solutions, amounts of bacteria, interferences, inorganic salts and lifetime.

  • PDF

A Consideration of Hydrazine Syntheses (Hydrazine 合成의 一考察)

  • Lee, Hac-Ki
    • Journal of the Korean Chemical Society
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 1961
  • It is important to study hydrazine because of the development of new uses for its derivatives. The Rasching method is the only satisfactory one for synthesizing hydrazine; it involves the oxidation of ammonia by sodium hypochlorite in the presence of some such catalyst as gelatin. Calcium hypochlorite was substituted for the sodium hypochlorite particularly in this work, applying agar-agar as catalyst. The results of the experiments are as follow: 1. The yield is proportional to the mole-ratio of ammonia to available chlorine in calcium hypochlorite and about 60% is obtained when the ratio is 20. 2. Agar-agar can be used as a catalyst and its proper concentration in the solution is 0.005%. 3. Proper concentration of available chlorine in the reaction solution is 0.23 mole/l. 4. The most effective condition for the reaction is a temperature of $60{\sim}65^{\circ}C.$ maintained for $20{\sim}25min$. 5. The reaction takes place equally well in either an open or closed container. 6. When calcium hypochlorite is applied in place of sodium hypochlorite, the yield of hydrazine is increased as much as 17%. 7. The yield of hydrazine is decreased by eliminating the suspension of $Ca(OH)_2$ which results from the use of calcium hypochlorite. 8. When $Ca(OH)_2$ is added to Rasching process, the yield of hydrazine is raised normally. 9. The fact that some metal ions, such as $Cu^{++},$ inhibit the formation of hydrazine was proved. 10. The suspension of $Ca(OH)_2$ acted as a remarkable adsorbent for $Cu^{++}$ like gelatin. The suspension of $Ca(OH)_2$ which results from the use of calcium hypochlorite acts as a catalyst, absorbing metal ions, to increase the yield of hydrazine. So I think that calcium hypochlorite is a more efficient oxidant than sodium hypochlorite in hydrazine syntheses.

  • PDF

Assessment of chemical purity of [13N]ammonia injection: Identification of aluminium ion concentration

  • Kim, Ho Young;Park, Jongbum;Lee, Ji Youn;Lee, Yun-Sang;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.2
    • /
    • pp.80-84
    • /
    • 2018
  • $[^{13}N]$Ammonia or $[^{13}N]NH_3$ is one of the most widely used PET tracer for the measurement of MBF. To produce $[^{13}N]NH_3$, devarda's alloy which contains aluminum, copper and zinc is used for the purpose of reduction from $^{13}N$-nitrate/nitrite to $[^{13}N]NH_3$. Since aluminum has neurotoxicity and renal toxicity, the amount of it should be carefully limited for the administration to the human body. Although USP and EP provide a way to identify the aluminum ion concentration, there are some difficulties to perform. Therefore, we tried to develop the modified method for verifying aluminum concentration of test solution. We compared color between test and standard solutions using chrome azurol S in pH 4.6 acetate buffer. We also tested color change of test and standard solutions according to pH, amounts and the order of reagent and time difference These results demonstrated that the color change of the solution can reflect quantitatively measure aluminum ion concentration. We hope the method is to be used effectively and practically in many sites where $[^{13}N]NH_3$ is produced.

Synthesis of Sulfonated Poly(phenylene sulfide) via Soluble Precursor and its Ammonia Gas Adsorption (용해성 전구체를 통한 Sulfonated Poly(phenylene sulfide)의 합성과 암모니아가스 흡착)

  • Son, Won Keun;Kim, Hyun Suk;Park, Soo Gil
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.666-671
    • /
    • 1999
  • In this work, sulfonated poly(phenylene sulfide) (SPPS) was prepared by demethylation with aqueous NaOH solution after poly[methyl[4-(phenylthio)phenyl]sulfonium trifluoromethanesulfonate](PPST) was sulfonated with fumic sulfonic acid(10% $SO_{3}-H_{2}SO_{4}$). PPST soluble in organic solvents was synthesiszed by self-condensation polymerization of methyl-(phenylthio)phenyl sulfoxide(MPPSO). SPPS showed IR bands of asymmetric O=S=O stretching at $1200cm^{-1}$ and S-O stretching at $621cm^{-1}$ from $-SO_{3}H$ group. From the result, it could be known that sulfonic acid groups were introduced to poly(phenylene sulfide). when PPST was sulfonated for 12hr at $150^{\circ}C$, 1.48 sulfonic acid groups were introduced per repeat unit. The weight average molecular weight(Mw) of PPST and SPPS determined by high temperature GPC were 118323 and 131204, respectively. The SPPS exhibited adsorption capacity of ammonia gas $9.67mmol\;NH_{3}/g$ and it was much higher than that of active carbon or silica gel.

  • PDF

Preparation of $\beta$-Cyclodextrinized Cellulosic Fiber and Deodouring Property ($\beta$-시클로덱스트린화 셀룰로오스 섬유의 제조 및 소취성)

  • Choi, Chang-Nam;Hwang, Tae-Yeon;Ko, Bong-Kook;Kim, Ryong;Hong, Sung-Hak;Kim, Sang-Yool
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.635-641
    • /
    • 2001
  • $\beta$-Cyclodextrine/benzoic acid complex was prepared and reacted with cyanuric chloride (2,4,6-trichloro-1,3,5-triazine). Identification of complex formation and reaction was checked by FT-IR, UV-Vis, and EDX. By reacting this material with cotton fiber, the deodourant fiber was prepared. The deodourizing property was evaluated by the concentration changes of aqueous ammonia solution after flowing ammonia gas through the column titled with deodourant fiber prepared. The deodourizing property was increased with an increase of concentration of $\beta$-cyclodextrine unit in the fiber. In the case of $\beta$-cyclodextrine/benzoic acid complex, the deodourzing property was much increased, comparing with the $\beta$-cyclodextrine only. It was considered to be the binding of aamonia gas caused by benzoic acid in the complex.

  • PDF

Photocatalytic Generated Oxygen Species Properties by Fullerene Modified Two-Dimensional MoS2 and Degradation of Ammonia Under Visible Light

  • Zou, Cong-Yang;Meng, Ze-Da;Zhao, Wei;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.353-366
    • /
    • 2021
  • In this study, photocatalytic degradation of ammonia in petrochemical wastewater is investigated by solar light photocatalysis. Two-dimensional ultra-thin atomic layer structured MoS2 are synthesized via a simple hydrothermal method. We examine all prepared samples by means of physical techniques, such as SEM-EDX, HRTEM, FT-IR, BET, XRD, XPS, DRS and PL. And, we use fullerene modified MoS2 nanosheets to enhance the activity of photochemically generated oxygen (PGO) species. Surface area and pore volumes of the MoS2-fullerene samples significantly increase due to the existence of MoS2. And, PGO oxidation of MB, TBA and TMST, causing its concentration in aqueous solution to decrease, is confirmed by the results of PL. The generation of reactive oxygen species is detected through the oxidation reaction from 1,5-diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). It is found that the photocurrent density and the PGO effect increase in the case with modified fullerene. The experimental results show that this heterogeneous catalyst has a degradation of 88.43% achieved through visible light irradiation. The product for the degradation of NH3 is identified as N2, but not NO2- or NO3-.

Facile Fabrication of Bimetallic Catalysts via Selective N atoms of N-Doped Carbon Nanotubes and Their Superior Catalytic Activities for Hydrogen Generation (질소가 포함된 탄소나노튜브의 질소 원자를 이용한 이중 금속 촉매 제조 및 그의 수소 발생 촉매 특성 분석)

  • Shin, Weon Ho;Jeong, Hyung Mo;Choi, Yoon Jeong;Kang, Jeung Ku
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.111.2-111.2
    • /
    • 2010
  • One-dimensional nanostructures such as carbon nanotubes could be ideal templates for formation of metallic nanoparticles. Furthermore, bimetallic component nanoparticles have recently been interesting issues for having high catalytic activity. This work provides both a facile method to synthesize bimetallic catalysts via N atoms of carbon nanotubes and also a picture about how to design the optimal bimetallic catalyst for hydrogen generation from the hydrogen storage material. In principle, the ratio of one component to another component could be generically extended to fabricate the high-performance bimetallic catalysts on host nanostructures. Indeed, we demonstrate that the bimetallic catalyst composed of the optimum composition results in the excellent hydrogen generation property from an aqueous borane ammonia solution, thus being capable of satisfying the Depart of Energy in USA target required for many advanced applications even with the small amount of our bimetallic catalysts attached onto the N-doped carbon nanotubes. This high hydrogen generation rate is found to be attributed to the optimal distance between active Pt and cheap Ni atoms for effective hydrogen generation.

  • PDF

Photolysis of Ammonia in Aqueous Methanol (메탄올수용액에서 암모니아의 광분해반응)

  • Park, Hyoung Ryun;Oh, Chu Ha;Sung, A Young;Kim, Hee Jeong;Oh, Jong Hoon
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.5
    • /
    • pp.234-238
    • /
    • 1997
  • The photochemical reaction of ammonia in deoxygenated aqueous methanol has been investigated at 25$^{\circ}C$ using 184.9 nm UV light. Amination was carried out by irradiating the solution of reaction mixture, and the formation of methoxyamine, hexamine, 1,1-dimethylhydrazine, dimethylamine, formamide, and a small amount of ethylenediamine was observed. In addition to these, carbonyl compounds such as formaldehyde, ethyleneglycol, glyoxal, and hydrazine were also produced. The initial quantum yields of the products were determined and probable mechanisms for the photochemical reaction were presented on the basis of product analysis.

  • PDF

Development of a variable resistance-capacitance model with time delay for urea-SCR system

  • Feng, Tan;Lu, Lin
    • Environmental Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.155-161
    • /
    • 2015
  • Experimental research shows that the nitric oxides ($NO_X$) concentration track at the outlet of selective catalytic reduction (SCR) catalyst with a transient variation of Adblue dosage has a time delay and it features a characteristic of resistance-capacitance (RC). The phenomenon brings obstacles to get the simultaneously $NO_X$ expected to be reduced and equi-molar ammonia available to SCR reaction, which finally inhibits $NO_X$ conversion efficiency. Generally, engine loads change frequently, which triggers a rapid changing of Adblue dosage, and it aggravates the air quality that are caused by $NO_X$ emission and ammonia slip. In order to increase the conversion efficiency of $NO_X$ and avoid secondary pollution, the paper gives a comprehensive analysis of the SCR system and tells readers the key factors that affect time delay and RC characteristics. Accordingly, a map of time delay is established and a solution method for time constant and proportional constant is carried out. Finally, the paper accurately describes the input-output state relation of SCR system by using "variable RC model with time delay". The model can be used for a real-time correction of Adblue dosage, which can increase the conversion efficiency of $NO_X$ in SCR system and avoid secondary pollution forming. Obviously, the results of the work discover an avenue for the SCR control strategy.

Spectroscopic Studies on ZrO2 Modified with MoO3 and Activity for Acid Catalysis

  • Sohn, Jong-Rack;Chun, Eun-Woo;Pae, Young-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.12
    • /
    • pp.1785-1792
    • /
    • 2003
  • Zirconia modified with $MoO_3$ was prepared by impregnation of powdered $Zr(OH)_4$ with ammonium heptamolybdate aqueous solution followed by calcining in air at high temperature. Spectroscopic studies on prepared catalysts were performed by using FTIR, Raman, XRD, and DSC and by measuring surface area. Upon the addition of molybdenum oxide to zirconia up to 15 wt%, the specific surface area increased in proportion to the molybdate oxide content, while acidity measured by irreversible chemisorption of ammonia exhibited a maximum value at 3 wt% of $MoO_3$. Since the $ZrO_2$ stabilizes the molybdenum oxide species, for the samples equal to or less than 30 wt%, molybdenum oxide was well dispersed on the surface of zirconia and no phase of crystalline $MoO_3$ was observed at any calcination temperature above $400^{\circ}C$. The catalytic activities for cumene dealkylation were roughly correlated with the acidity of catalysts measured by ammonia chemisorption method, while the catalytic activities for 2-propanol dehydration were not correlated with the acidity because weak acid sites are necessary for the reaction.