References
- Martin, C.; Martin, I.; Rives, V. J. Chem. Soc. Faraday Trans. 1993, 89, 4131. https://doi.org/10.1039/ft9938904131
- Niwa, M.; Yamada, H.; Murakami, Y. J. Catal. 1992, 134, 331. https://doi.org/10.1016/0021-9517(92)90232-7
- Matsuoka, Y.; Niwa, M.; Murakami, Y. J. Phys. Chem. 1990, 94, 1477. https://doi.org/10.1021/j100367a051
- Miyata, H.; Tokuda, S.; Ono, T.; Ohno, T.; Hatayama, F. J. Chem. Soc., Faraday Trans. 1990, 86, 2291. https://doi.org/10.1039/ft9908602291
- Miyata, H.; Tokuda, S.; Ono, T.; Ohno, T.; Hatayama, F. J. Chem. Soc., Faraday Trans. 1990, 86, 3659. https://doi.org/10.1039/ft9908603659
- Afanasiev, P.; Geantet, C.; Breysse, M. J. Catal. 1995, 153, 17. https://doi.org/10.1006/jcat.1995.1103
- Okamoto, Y.; Imanaka, T.; Teramishi, S. J. Phys. Chem. 1981, 85, 3798. https://doi.org/10.1021/j150625a018
- Ono, T.; Anpo, M.; Kabokawa, Y. J. Phys. Chem. 1986, 90, 4780. https://doi.org/10.1021/j100411a014
- Quincy, R. B.; Houalla, M.; Proctor, A.; Hercules, D. M. J. Phys. Chem. 1990, 94, 1520. https://doi.org/10.1021/j100367a058
- Zhao, B.; Wang, X.; Ma, H.; Tang, Y. J. Mol. Catal. A: Chemical 1996, 108, 167. https://doi.org/10.1016/1381-1169(96)00008-8
- Ng, K. Y. S.; Guilari, E. J. Catal. 1985, 92, 340. https://doi.org/10.1016/0021-9517(85)90268-4
- Jin, Y. S.; Auroux, A.; Vedrine, J. C. J. Chem. Soc. Faraday Trnas. 1989, 83, 4179.
- Maity, S. K.; Rana, M. S.; Srinivas, B. N.; Bej, S. K.; Murali. Dhar, G.; Prasada Rao, T. S. R. J. Mol. Catal. A: Chemical 2000, 153, 121. https://doi.org/10.1016/S1381-1169(99)00311-8
- Brown, A. S. C.; Hargreaves, J. S. J.; Taylor, S. H. Catal. Lett. 1999, 57, 109. https://doi.org/10.1023/A:1019047632335
- Chen, K.; Xie, S.; Tglesia, E.; Bell, A. T. J. Catal. 2000, 189, 421. https://doi.org/10.1006/jcat.1999.2720
- Ebitani, K.; Konish, J.; Hattori, H. J. Catal. 1991, 130, 257. https://doi.org/10.1016/0021-9517(91)90108-G
- Vaudagna, S. R.; Conelli, R. A.; Canavese, S. A.; Figoli, N. S. J. Catal. 1997, 169, 389. https://doi.org/10.1006/jcat.1997.1690
- Arata, K. Adv. Catal. 1990, 37, 165. https://doi.org/10.1016/S0360-0564(08)60365-X
- Imamura, S.; Sasaki, H.; Shono, M.; Kanai, H. J. Catal. 1998, 177, 72. https://doi.org/10.1006/jcat.1998.2088
- Desikan, A. N.; Huang, L.; Oyama, S. T. J. Phys. Chem. 1991, 95, 10050. https://doi.org/10.1021/j100177a080
- Sohn, J. R. J. Ind. Eng. Chem. 2004, 10, in press.
- Sohn, J. R.; Kwon, T. D.; Kim, S. B. J. Ind. Eng. Chem. 2001, 7, 441.
- Sohn, J. R.; Seo, K. C.; Pae, Y. I. Bull. Korean Chem. Soc. 2003, 24, 311. https://doi.org/10.1007/s11814-007-5052-x
- Sohn, J. R.; Cho, S. G.; Pae, Y. I.; Hayashi, S. J. Catal. 1996, 159, 170. https://doi.org/10.1006/jcat.1996.0076
- Sohn, J. R.; Park, M. Y. Langmuir 1998, 14, 6140. https://doi.org/10.1021/la980222z
- Sohn, J. R.; Ozaki, A. J. Catal. 1980, 61, 29. https://doi.org/10.1016/0021-9517(80)90336-X
- Sohn, J. R.; Ryu, S. G. Langmuir 1993, 9, 126. https://doi.org/10.1021/la00025a029
- Smith, M. R.; Ozkan, U. S. J. Catal. 1993, 141, 124. https://doi.org/10.1006/jcat.1993.1124
- Liu, Z.; Chen, Y. J. Catal. 1998, 177, 314. https://doi.org/10.1006/jcat.1998.2123
- Mestl, G.; Srinivasan, T. K. K. Cat. Rev. Sci. Eng. 1998, 40, 451. https://doi.org/10.1080/01614949808007114
- Dufresne, P.; Payen, E.; Grimblot, J.; Bonnelle, J. P. J. Phys. Chem. 1981, 85, 2344. https://doi.org/10.1021/j150616a010
- Hu, H.; Wachs, I. E. J. Phys. Chem. 1995, 99, 10897. https://doi.org/10.1021/j100027a034
- Roark, R. D.; Kohler, S. D.; Ekerdt, J. G.; Kim, D. S.; Wachs, I. E. Catal. Lett. 1992, 16, 77. https://doi.org/10.1007/BF00764357
- Schild, C. H.; Wokaun, A.; Koppel, R. A.; Baiker, A. J. Catal. 1991, 130, 657. https://doi.org/10.1016/0021-9517(91)90145-T
- Sohn, J. R.; Doh, I. J.; Pae, Y. I. Langmuir 2002, 18, 6280. https://doi.org/10.1021/la020223y
- Scheithauer, M.; Grasselli, R. K.; Knozinger, H. Langmuir 1998, 14, 3019. https://doi.org/10.1021/la971399g
- Litteti, L.; Nova, I.; Ramis, G.; DallAcqua, L.; Busca, G.; Giamello, E.; Forzatti, P.; Bregani, F. J. Catal. 1999, 187, 419. https://doi.org/10.1006/jcat.1999.2603
- Kim, D. S.; Ostromecki, M.; Wachs, I. E. J. Mol. Catal. A: Chemical 1996, 106, 93. https://doi.org/10.1016/1381-1169(95)00186-7
- Larsen, G.; Lotero, E.; Petkovic, L. M.; Shobe, D. S. J. Catal. 1997, 169, 67. https://doi.org/10.1006/jcat.1997.1698
- Afanasiev, P.; Geantet, C.; Breysse, M.; Coudurier, G.; Vedrine, J. C. J. Chem. Soc., Faraday Trans., 1 1994, 190, 193.
- Tanabe, K.; Misono, M.; Ono, Y.; Hattori, J. New Solid Acids and Bases; Elsevier Science: Amsterdam, 1989; p 108.
- Satsuma, A.; Hattori, A.; Mizutani, K.; Furuta, A.; Niyamoto, A.; Hattori, T.; Murakami, Y. J. Phys. Chem. 1988, 92, 6052. https://doi.org/10.1021/j100332a042
- DeCanio, S. J.; Sohn, J. R.; Fritz, P. O.; Lunsford, J. H. J. Catal. 1986, 101, 132. https://doi.org/10.1016/0021-9517(86)90236-8
Cited by
- Nanoparticles and Studies on Their Photochromic Properties vol.4, pp.3, 2012, https://doi.org/10.1080/19430892.2012.738963
- for the Acetalization of 1,3-Propanediol from Dilute Solutions vol.51, pp.18, 2012, https://doi.org/10.1021/ie202370q
- Properties vol.2014, pp.1687-8442, 2014, https://doi.org/10.1155/2014/432031
- New samarium(III) complex of 5-aminoorotic acid with antioxidant activity vol.29, pp.12, 2015, https://doi.org/10.1002/aoc.3374
- Synthesis and physicochemical characterization of ZrO2-doped NiMo/Al2O3 nanocatalyst via precipitation and sequential impregnation methods used in hydrodesulfurization of thiophene vol.32, pp.7, 2015, https://doi.org/10.1007/s11814-014-0319-5
- Efficient microwave synthesis of novel aromatic esters catalyzed by zirconia and its modified forms: a kinetic study vol.5, pp.120, 2015, https://doi.org/10.1039/C5RA20430E
- Synthesis, characterization, and antioxidant activity of a new Gd(III) complex vol.68, pp.22, 2015, https://doi.org/10.1080/00958972.2015.1083557
- Vibrational characterization and prooxidant activity of newly synthesized dysprosium(III) complex vol.13, pp.5, 2016, https://doi.org/10.1007/s13738-015-0805-7
- Support Enhances the Oxygen Reduction Reaction vol.6, pp.10, 2016, https://doi.org/10.1021/acscatal.6b00600
- n-Heptane hydroconversion over sulfated-zirconia-supported molybdenum carbide catalysts vol.6, pp.4, 2016, https://doi.org/10.1007/s13203-016-0172-z
- The effects of cerium doping concentration on the properties and photocatalytic activity of bimetallic Mo/Ce catalyst vol.90, pp.10, 2016, https://doi.org/10.1134/S0036024416080094
- Theoretical and spectroscopic studies of 5-aminoorotic acid and its new lanthanide(III) complexes vol.38, pp.2, 2007, https://doi.org/10.1002/jrs.1625
- Characterization of NiO-TiO2 Modified with WO3 and Catalytic Activity for Acid Catalysis vol.25, pp.12, 2004, https://doi.org/10.5012/bkcs.2004.25.12.1881
- Acidic Properties and Catalytic Activity of Titanium Sulfate Supported on TiO2 vol.25, pp.5, 2003, https://doi.org/10.5012/bkcs.2004.25.5.657
- Catalytic Oxidation of Trichloroethylene over Pd-Loaded Sulfated Zirconia vol.25, pp.9, 2004, https://doi.org/10.5012/bkcs.2004.25.9.1355
- Preparation and Characterization of NiO/CeO2-ZrO2/WO3 Catalyst for Ethylene Dimerization: Effect of CeO2 Doping and WO3 Modifying on Catalytic Ac vol.26, pp.5, 2003, https://doi.org/10.5012/bkcs.2005.26.5.755
- Effect of Dispersed MoO3 Amount on Catalytic Activity of NiO-ZrO2 Modified with MoO3 for Acid Catalysis vol.27, pp.10, 2003, https://doi.org/10.5012/bkcs.2006.27.10.1623
- NiO/La2O3-ZrO2/WO3 Catalyst Prepared by Doping ZrO2 with La2O3 and Modifying with WO3 for Acid Catalysis vol.27, pp.6, 2003, https://doi.org/10.5012/bkcs.2006.27.6.821
- Effect of V2O5 Modification in V2O5/TiO2-ZrO2 Catalysts on Their Surface Properties and Catalytic Activities for Acid Catalysis vol.28, pp.12, 2003, https://doi.org/10.5012/bkcs.2007.28.12.2459
- Spectroscopic studies on NiO supported on ZrO2 modified with MoO3 for ethylene dimerization vol.317, pp.2, 2003, https://doi.org/10.1016/j.apcata.2006.10.015
- Reactivity in the Solid State Between Cobalt and Aluminum Molybdate vol.31, pp.5, 2010, https://doi.org/10.1007/s11669-010-9781-x
- Synthesis, Characterization and Catalytic Application of MoO3/CeO2-ZrO2 Solid Heterogeneous Catalyst for the Synthesis of Benzimidazole Derivatives vol.31, pp.10, 2003, https://doi.org/10.5012/bkcs.2010.31.10.2835
- Effect of B and Sn on Ni catalysts supported on pure- and on WO3/MoO3-modified zirconias for direct CH4 conversion to H2 vol.103, pp.3, 2003, https://doi.org/10.1016/j.apcatb.2011.01.039
- Production optimization of 99Mo/99mTc zirconium molybate gel generators at semi-automatic device: DISIGEG vol.70, pp.1, 2012, https://doi.org/10.1016/j.apradiso.2011.09.017
- Simple but efficient synthesis of novel substituted benzimidazoles over ZrO2-Al2O3 vol.46, pp.18, 2003, https://doi.org/10.1080/00397911.2016.1215468
- Bifunctional Sulfonated MoO3-ZrO2 Binary Oxide Catalysts for the One-Step Synthesis of 2,5-Diformylfuran from Fructose vol.6, pp.3, 2018, https://doi.org/10.1021/acssuschemeng.7b02671
- Influence of Molybdenum Loadings on the Properties of MoO3/Zirconia Catalysts vol.1, pp.3, 2018, https://doi.org/10.1007/s42250-018-0016-6
- Catalytic Synthesis of Levulinate Esters over Zirconia and its Modified Forms Coated on Honeycomb Monoliths: Green Synthesis vol.31, pp.9, 2003, https://doi.org/10.14233/ajchem.2019.22102
- Theoretical and Experimental Vibrational Characterization of Biologically Active Nd(III) Complex vol.26, pp.9, 2021, https://doi.org/10.3390/molecules26092726