DOI QR코드

DOI QR Code

Spectroscopic Studies on ZrO2 Modified with MoO3 and Activity for Acid Catalysis

  • Sohn, Jong-Rack (Department of Industrial Chemistry, Engineering College, Kyungpook National University) ;
  • Chun, Eun-Woo (Department of Industrial Chemistry, Engineering College, Kyungpook National University) ;
  • Pae, Young-Il (Department of Chemistry, University of Ulsan)
  • Published : 2003.12.20

Abstract

Zirconia modified with $MoO_3$ was prepared by impregnation of powdered $Zr(OH)_4$ with ammonium heptamolybdate aqueous solution followed by calcining in air at high temperature. Spectroscopic studies on prepared catalysts were performed by using FTIR, Raman, XRD, and DSC and by measuring surface area. Upon the addition of molybdenum oxide to zirconia up to 15 wt%, the specific surface area increased in proportion to the molybdate oxide content, while acidity measured by irreversible chemisorption of ammonia exhibited a maximum value at 3 wt% of $MoO_3$. Since the $ZrO_2$ stabilizes the molybdenum oxide species, for the samples equal to or less than 30 wt%, molybdenum oxide was well dispersed on the surface of zirconia and no phase of crystalline $MoO_3$ was observed at any calcination temperature above $400^{\circ}C$. The catalytic activities for cumene dealkylation were roughly correlated with the acidity of catalysts measured by ammonia chemisorption method, while the catalytic activities for 2-propanol dehydration were not correlated with the acidity because weak acid sites are necessary for the reaction.

Keywords

References

  1. Martin, C.; Martin, I.; Rives, V. J. Chem. Soc. Faraday Trans. 1993, 89, 4131. https://doi.org/10.1039/ft9938904131
  2. Niwa, M.; Yamada, H.; Murakami, Y. J. Catal. 1992, 134, 331. https://doi.org/10.1016/0021-9517(92)90232-7
  3. Matsuoka, Y.; Niwa, M.; Murakami, Y. J. Phys. Chem. 1990, 94, 1477. https://doi.org/10.1021/j100367a051
  4. Miyata, H.; Tokuda, S.; Ono, T.; Ohno, T.; Hatayama, F. J. Chem. Soc., Faraday Trans. 1990, 86, 2291. https://doi.org/10.1039/ft9908602291
  5. Miyata, H.; Tokuda, S.; Ono, T.; Ohno, T.; Hatayama, F. J. Chem. Soc., Faraday Trans. 1990, 86, 3659. https://doi.org/10.1039/ft9908603659
  6. Afanasiev, P.; Geantet, C.; Breysse, M. J. Catal. 1995, 153, 17. https://doi.org/10.1006/jcat.1995.1103
  7. Okamoto, Y.; Imanaka, T.; Teramishi, S. J. Phys. Chem. 1981, 85, 3798. https://doi.org/10.1021/j150625a018
  8. Ono, T.; Anpo, M.; Kabokawa, Y. J. Phys. Chem. 1986, 90, 4780. https://doi.org/10.1021/j100411a014
  9. Quincy, R. B.; Houalla, M.; Proctor, A.; Hercules, D. M. J. Phys. Chem. 1990, 94, 1520. https://doi.org/10.1021/j100367a058
  10. Zhao, B.; Wang, X.; Ma, H.; Tang, Y. J. Mol. Catal. A: Chemical 1996, 108, 167. https://doi.org/10.1016/1381-1169(96)00008-8
  11. Ng, K. Y. S.; Guilari, E. J. Catal. 1985, 92, 340. https://doi.org/10.1016/0021-9517(85)90268-4
  12. Jin, Y. S.; Auroux, A.; Vedrine, J. C. J. Chem. Soc. Faraday Trnas. 1989, 83, 4179.
  13. Maity, S. K.; Rana, M. S.; Srinivas, B. N.; Bej, S. K.; Murali. Dhar, G.; Prasada Rao, T. S. R. J. Mol. Catal. A: Chemical 2000, 153, 121. https://doi.org/10.1016/S1381-1169(99)00311-8
  14. Brown, A. S. C.; Hargreaves, J. S. J.; Taylor, S. H. Catal. Lett. 1999, 57, 109. https://doi.org/10.1023/A:1019047632335
  15. Chen, K.; Xie, S.; Tglesia, E.; Bell, A. T. J. Catal. 2000, 189, 421. https://doi.org/10.1006/jcat.1999.2720
  16. Ebitani, K.; Konish, J.; Hattori, H. J. Catal. 1991, 130, 257. https://doi.org/10.1016/0021-9517(91)90108-G
  17. Vaudagna, S. R.; Conelli, R. A.; Canavese, S. A.; Figoli, N. S. J. Catal. 1997, 169, 389. https://doi.org/10.1006/jcat.1997.1690
  18. Arata, K. Adv. Catal. 1990, 37, 165. https://doi.org/10.1016/S0360-0564(08)60365-X
  19. Imamura, S.; Sasaki, H.; Shono, M.; Kanai, H. J. Catal. 1998, 177, 72. https://doi.org/10.1006/jcat.1998.2088
  20. Desikan, A. N.; Huang, L.; Oyama, S. T. J. Phys. Chem. 1991, 95, 10050. https://doi.org/10.1021/j100177a080
  21. Sohn, J. R. J. Ind. Eng. Chem. 2004, 10, in press.
  22. Sohn, J. R.; Kwon, T. D.; Kim, S. B. J. Ind. Eng. Chem. 2001, 7, 441.
  23. Sohn, J. R.; Seo, K. C.; Pae, Y. I. Bull. Korean Chem. Soc. 2003, 24, 311. https://doi.org/10.1007/s11814-007-5052-x
  24. Sohn, J. R.; Cho, S. G.; Pae, Y. I.; Hayashi, S. J. Catal. 1996, 159, 170. https://doi.org/10.1006/jcat.1996.0076
  25. Sohn, J. R.; Park, M. Y. Langmuir 1998, 14, 6140. https://doi.org/10.1021/la980222z
  26. Sohn, J. R.; Ozaki, A. J. Catal. 1980, 61, 29. https://doi.org/10.1016/0021-9517(80)90336-X
  27. Sohn, J. R.; Ryu, S. G. Langmuir 1993, 9, 126. https://doi.org/10.1021/la00025a029
  28. Smith, M. R.; Ozkan, U. S. J. Catal. 1993, 141, 124. https://doi.org/10.1006/jcat.1993.1124
  29. Liu, Z.; Chen, Y. J. Catal. 1998, 177, 314. https://doi.org/10.1006/jcat.1998.2123
  30. Mestl, G.; Srinivasan, T. K. K. Cat. Rev. Sci. Eng. 1998, 40, 451. https://doi.org/10.1080/01614949808007114
  31. Dufresne, P.; Payen, E.; Grimblot, J.; Bonnelle, J. P. J. Phys. Chem. 1981, 85, 2344. https://doi.org/10.1021/j150616a010
  32. Hu, H.; Wachs, I. E. J. Phys. Chem. 1995, 99, 10897. https://doi.org/10.1021/j100027a034
  33. Roark, R. D.; Kohler, S. D.; Ekerdt, J. G.; Kim, D. S.; Wachs, I. E. Catal. Lett. 1992, 16, 77. https://doi.org/10.1007/BF00764357
  34. Schild, C. H.; Wokaun, A.; Koppel, R. A.; Baiker, A. J. Catal. 1991, 130, 657. https://doi.org/10.1016/0021-9517(91)90145-T
  35. Sohn, J. R.; Doh, I. J.; Pae, Y. I. Langmuir 2002, 18, 6280. https://doi.org/10.1021/la020223y
  36. Scheithauer, M.; Grasselli, R. K.; Knozinger, H. Langmuir 1998, 14, 3019. https://doi.org/10.1021/la971399g
  37. Litteti, L.; Nova, I.; Ramis, G.; DallAcqua, L.; Busca, G.; Giamello, E.; Forzatti, P.; Bregani, F. J. Catal. 1999, 187, 419. https://doi.org/10.1006/jcat.1999.2603
  38. Kim, D. S.; Ostromecki, M.; Wachs, I. E. J. Mol. Catal. A: Chemical 1996, 106, 93. https://doi.org/10.1016/1381-1169(95)00186-7
  39. Larsen, G.; Lotero, E.; Petkovic, L. M.; Shobe, D. S. J. Catal. 1997, 169, 67. https://doi.org/10.1006/jcat.1997.1698
  40. Afanasiev, P.; Geantet, C.; Breysse, M.; Coudurier, G.; Vedrine, J. C. J. Chem. Soc., Faraday Trans., 1 1994, 190, 193.
  41. Tanabe, K.; Misono, M.; Ono, Y.; Hattori, J. New Solid Acids and Bases; Elsevier Science: Amsterdam, 1989; p 108.
  42. Satsuma, A.; Hattori, A.; Mizutani, K.; Furuta, A.; Niyamoto, A.; Hattori, T.; Murakami, Y. J. Phys. Chem. 1988, 92, 6052. https://doi.org/10.1021/j100332a042
  43. DeCanio, S. J.; Sohn, J. R.; Fritz, P. O.; Lunsford, J. H. J. Catal. 1986, 101, 132. https://doi.org/10.1016/0021-9517(86)90236-8

Cited by

  1. Nanoparticles and Studies on Their Photochromic Properties vol.4, pp.3, 2012, https://doi.org/10.1080/19430892.2012.738963
  2. for the Acetalization of 1,3-Propanediol from Dilute Solutions vol.51, pp.18, 2012, https://doi.org/10.1021/ie202370q
  3. Properties vol.2014, pp.1687-8442, 2014, https://doi.org/10.1155/2014/432031
  4. New samarium(III) complex of 5-aminoorotic acid with antioxidant activity vol.29, pp.12, 2015, https://doi.org/10.1002/aoc.3374
  5. Synthesis and physicochemical characterization of ZrO2-doped NiMo/Al2O3 nanocatalyst via precipitation and sequential impregnation methods used in hydrodesulfurization of thiophene vol.32, pp.7, 2015, https://doi.org/10.1007/s11814-014-0319-5
  6. Efficient microwave synthesis of novel aromatic esters catalyzed by zirconia and its modified forms: a kinetic study vol.5, pp.120, 2015, https://doi.org/10.1039/C5RA20430E
  7. Synthesis, characterization, and antioxidant activity of a new Gd(III) complex vol.68, pp.22, 2015, https://doi.org/10.1080/00958972.2015.1083557
  8. Vibrational characterization and prooxidant activity of newly synthesized dysprosium(III) complex vol.13, pp.5, 2016, https://doi.org/10.1007/s13738-015-0805-7
  9. Support Enhances the Oxygen Reduction Reaction vol.6, pp.10, 2016, https://doi.org/10.1021/acscatal.6b00600
  10. n-Heptane hydroconversion over sulfated-zirconia-supported molybdenum carbide catalysts vol.6, pp.4, 2016, https://doi.org/10.1007/s13203-016-0172-z
  11. The effects of cerium doping concentration on the properties and photocatalytic activity of bimetallic Mo/Ce catalyst vol.90, pp.10, 2016, https://doi.org/10.1134/S0036024416080094
  12. Theoretical and spectroscopic studies of 5-aminoorotic acid and its new lanthanide(III) complexes vol.38, pp.2, 2007, https://doi.org/10.1002/jrs.1625
  13. Characterization of NiO-TiO2 Modified with WO3 and Catalytic Activity for Acid Catalysis vol.25, pp.12, 2004, https://doi.org/10.5012/bkcs.2004.25.12.1881
  14. Acidic Properties and Catalytic Activity of Titanium Sulfate Supported on TiO2 vol.25, pp.5, 2003, https://doi.org/10.5012/bkcs.2004.25.5.657
  15. Catalytic Oxidation of Trichloroethylene over Pd-Loaded Sulfated Zirconia vol.25, pp.9, 2004, https://doi.org/10.5012/bkcs.2004.25.9.1355
  16. Preparation and Characterization of NiO/CeO2-ZrO2/WO3 Catalyst for Ethylene Dimerization: Effect of CeO2 Doping and WO3 Modifying on Catalytic Ac vol.26, pp.5, 2003, https://doi.org/10.5012/bkcs.2005.26.5.755
  17. Effect of Dispersed MoO3 Amount on Catalytic Activity of NiO-ZrO2 Modified with MoO3 for Acid Catalysis vol.27, pp.10, 2003, https://doi.org/10.5012/bkcs.2006.27.10.1623
  18. NiO/La2O3-ZrO2/WO3 Catalyst Prepared by Doping ZrO2 with La2O3 and Modifying with WO3 for Acid Catalysis vol.27, pp.6, 2003, https://doi.org/10.5012/bkcs.2006.27.6.821
  19. Effect of V2O5 Modification in V2O5/TiO2-ZrO2 Catalysts on Their Surface Properties and Catalytic Activities for Acid Catalysis vol.28, pp.12, 2003, https://doi.org/10.5012/bkcs.2007.28.12.2459
  20. Spectroscopic studies on NiO supported on ZrO2 modified with MoO3 for ethylene dimerization vol.317, pp.2, 2003, https://doi.org/10.1016/j.apcata.2006.10.015
  21. Reactivity in the Solid State Between Cobalt and Aluminum Molybdate vol.31, pp.5, 2010, https://doi.org/10.1007/s11669-010-9781-x
  22. Synthesis, Characterization and Catalytic Application of MoO3/CeO2-ZrO2 Solid Heterogeneous Catalyst for the Synthesis of Benzimidazole Derivatives vol.31, pp.10, 2003, https://doi.org/10.5012/bkcs.2010.31.10.2835
  23. Effect of B and Sn on Ni catalysts supported on pure- and on WO3/MoO3-modified zirconias for direct CH4 conversion to H2 vol.103, pp.3, 2003, https://doi.org/10.1016/j.apcatb.2011.01.039
  24. Production optimization of 99Mo/99mTc zirconium molybate gel generators at semi-automatic device: DISIGEG vol.70, pp.1, 2012, https://doi.org/10.1016/j.apradiso.2011.09.017
  25. Simple but efficient synthesis of novel substituted benzimidazoles over ZrO2-Al2O3 vol.46, pp.18, 2003, https://doi.org/10.1080/00397911.2016.1215468
  26. Bifunctional Sulfonated MoO3-ZrO2 Binary Oxide Catalysts for the One-Step Synthesis of 2,5-Diformylfuran from Fructose vol.6, pp.3, 2018, https://doi.org/10.1021/acssuschemeng.7b02671
  27. Influence of Molybdenum Loadings on the Properties of MoO3/Zirconia Catalysts vol.1, pp.3, 2018, https://doi.org/10.1007/s42250-018-0016-6
  28. Catalytic Synthesis of Levulinate Esters over Zirconia and its Modified Forms Coated on Honeycomb Monoliths: Green Synthesis vol.31, pp.9, 2003, https://doi.org/10.14233/ajchem.2019.22102
  29. Theoretical and Experimental Vibrational Characterization of Biologically Active Nd(III) Complex vol.26, pp.9, 2021, https://doi.org/10.3390/molecules26092726