• Title/Summary/Keyword: amino modified silicone oil

Search Result 2, Processing Time 0.014 seconds

Fabrication Technique of Nanoemulsion Using Silicone Oil and Application as Hydrophilic Ophthalmic Lens

  • Hye-In Park;A-Young Sung
    • Korean Journal of Materials Research
    • /
    • v.34 no.7
    • /
    • pp.315-320
    • /
    • 2024
  • In order to maximize the function and increase the compatibility of silicone hydrogel lens, this study compared and analyzed the properties of Amino modified silicone oil using mini and microemulsion technique, respectively. Optical and physical properties were evaluated by spectral transmittance, refractive index, water content, oxygen transmittance and contact angle measurements to evaluate the performance of the manufactured hydrogel lens. The spectral transmittance results revealed the copolymerization method lens showed 31 % of the visible light area, which did not satisfy the basic optical properties. However, the lens using the mini and microemulsion materials showed more than 90 % of the visible light area, satisfying the optical characteristics. In addition, all physical properties were superior to a basic hydrogel lens. The mini and microemulsion techniques effectively improved the stability and function of the ophthalmic hydrogel lens and are considered a promising ways of manufacturing an ophthalmic hydrogel contact lens with increased compatibility and stability.

Characterization of Emulsion Properties for Modified Amino Polysiloxanes (아미노 변성 폴리실록산의 유화 특성)

  • 하윤식;서무룡;이정경;박경일;장윤호
    • Journal of Environmental Science International
    • /
    • v.8 no.1
    • /
    • pp.61-67
    • /
    • 1999
  • Silicone oil has organic and inorganic properties, and its skeleton is polysiloxane bonding that silicon is bonded hydrogen or organic group. Silicone compounds are very smooth and lubricant properties by low surface tension, low temperature dependence, and nonadhesive properties. Because of these properties, silicone compounds are used as many parts of chemicals, softener, smooth and libricant agents, water-repellent agent, and defoaming agent, etc. Emulsion was prepared with the inversion emulsification method which adopted the agent-in-oil method dissolving the polyoxyethylene(7) tridecyl ether(HLB 12.2) into methoxy terminated poly(dimethyl-co-methyl amino) siloxane and hydroxy terminated poly(dimethyl-co-methyl amino) siloxane in water. At this time, processed emulsion was almost microemulsion. When ratio of emulsifier increases, emulsion is stable bacuause microemulsion is solubilized by emulsion drop size and zeta-potential are decreased. But, when amount of electrolyte is increase, emulsion became unstable because emulsion drop size is increased.

  • PDF