• 제목/요약/키워드: amino acid sequence analysis

검색결과 892건 처리시간 0.026초

First Report of Cucumber mosaic virus Infecting Pinewood Coneflower (Rudbeckia bicolor) in Korea

  • Kim, Mi-Kyeong;Kwak, Hae-Ryun;Ko, Sug-Ju;Lee, Su-Heon;Kim, Jeong-Soo;Kim, Kook-Hyung;Cha, Byeong-Jin;Choi, Hong-Soo
    • The Plant Pathology Journal
    • /
    • 제26권1호
    • /
    • pp.93-98
    • /
    • 2010
  • A virus isolate causing symptoms of yellow mosaic, fern leaves, malformation and plant necrosis on Rudbeckia bicolor was prevalent around Pyeongchang area in Korea. The causal virus was identified as Cucumber mosaic virus (CMV) using characteristics from biological, serological and molecular analyses and named as CMV-Rb. CMV-Rb caused mosaic on Nicotiana benthamiana, N. tabacum, Capsicum annuum, and Lycopersicon esculentum. However, typical local lesions did not develop on inoculated Pisum sativum, Cucurbita moschata, Datura stramonium and Tetragonia expansa plants. Full-length genome sequences of CMV-Rb RNAs 1, 2 and 3 were obtained using 12 primer pairs by RT-PCR analysis. The genome of CMV-Rb RNA segments 1, 2, and 3 consists of 3363nt, 3049nt, and 2214nt in length, respectively. In order to ascertain their taxonomic identity, nucleotide and the deduced amino acid sequence analyses RNAs 1, 2 and 3 of CMV-Rb isolates were conducted with previously reported sequences of CMV strains and/or isolates. CMV-Rb RNAs showed about 90 to 99% sequence identity to those of subgroup I strains suggesting that CMV-Rb is more closely related to CMV isolates belong to subgroup I. To our knowledge, this is the first report of CMV on Rudbeckia bicolor in Korea.

키토사네이즈 유전자의 클로닝과 키토산 올리고머의 정량적 생산 (Molecular Cloning of Chitosanase Gene and Quantitative Production of Chitosan Oligomer)

  • 박유미;장혜란;허태린;김사열
    • 한국미생물·생명공학회지
    • /
    • 제32권1호
    • /
    • pp.16-21
    • /
    • 2004
  • Chitosanase분비 세균을 찾아내기 위해 남해안의 서로 다른 다섯 치역의 해안 갯벌과 게를 채취하였다. 시료를 키토산선별 배지에 도말하여 얻은 균주 중에 투명환을 형성하는 6종의 균주를 선택하여 분리하였다. 그들은 FE-SEM을 이용한 형태 관찰과 165 rDNA sequence analysis를 통해 Bacillus cereus KNUC51, B. cereus KNUC52, B. cereus KNUC53, B. cereus KNUC54, B. cereus KNUC55, Paenibacillus favisporus KNUC56 등으로 균주명이 정해졌다. Chitosnase 활성을 측정한 결과 기존에 알려진 B. subtilis 168과 유사한 활성을 나타내었다. 효소 활성을 높이기 위해 강력한 돌연변이 유발 물질인 MNNG를 사용하여 돌연변이주를 만든 결과 원균주와 비교해 효소활성이 높은 3개 균주를 선별할 수 있었다. B. cereus 5균주의 chitosnase를 지정하며 생산하는 csn유전자를 분리 정제하여 DNA염기서열을 결정하고 아미노산 서열을 예상하였다. 예상된 아미노산의 잔기는 453 잔기였고 B. cereus ATCC14579의 것과 93% 이상의 상동성을 나타내었다. 분리 균주의 배양 상등액을 키토산 중합체와 반응시킨 후 반응물로 박층크로 마토그래피를 실시한 결과 5분 이하로 반응을 시켰을 때 효능이 좋은 3-10개 사이의 잔기를 가진 키토산 올리고당을 만들 수 있다는 것을 볼 수 있었다.

Isolation and Biochemical Characterization of Bacillus pumilus Lipases from the Antarctic

  • Arifin, Arild Ranlym;Kim, Soon-Ja;Yim, Joung Han;Suwanto, Antonius;Kim, Hyung Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권5호
    • /
    • pp.661-667
    • /
    • 2013
  • Lipase-producing bacterial strains were isolated from Antarctic soil samples using the tricaprylin agar plate method. Seven strains with relatively strong lipase activities were selected. All of them turned out to be Bacillus pumilus strains by the 16S rRNA gene sequence analysis. Their corresponding lipase genes were cloned, sequenced, and compared. Finally, three different Bacillus pumilus lipases (BPL1, BPL2, and BPL3) were chosen. Their amino acid sequence identities were in the range of 92-98% with the previous Bacillus pumilus lipases. Their optimum temperatures and pHs were measured to be $40^{\circ}C$ and pH 9. Lipase BPL1 and lipase BPL2 were stable up to $30^{\circ}C$, whereas lipase BPL3 was stable up to $20^{\circ}C$. Lipase BPL2 was stable within a pH range of 6-10, whereas lipase BPL1 and lipase BPL3 were stable within a pH range of 5-11, showing strong alkaline tolerance. All these lipases exhibited high hydrolytic activity toward p-nitrophenyl caprylate ($C_8$). In addition, lipase BPL1 showed high hydrolytic activity toward tributyrin, whereas lipase BPL2 and lipase BPL3 hydrolyzed tricaprylin and castor oil preferentially. These results demonstrated that the three Antarctic Bacillus lipases were alkaliphilic and had a substrate preference toward short- and medium-chain triglycerides. These Antarctic Bacillus lipases might be used in detergent and food industries.

Isolation and Sequence Analysis of Ycf4 Gene from Zoysia japonica Steud.

  • Kim, Yang Ji;Lee, Hyo Yeon;Hyun, Hwa Ja
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 추계학술대회
    • /
    • pp.100-100
    • /
    • 2018
  • Zoysia japonica Steud.(Zj) is a typical warm-season Korean lawn grass, which is used in many places such as river banks, roadside and soccer fields in Korea. Recently, it has also been used in school yards and the Saemangeum reclaimed land to reduce water pollution. Although the cultivated area of turfgrass is steadily increasing worldwide, it grows fast requiring frequent mowing and is difficult to grow in shady areas and the cold region. Therefore this study aims searching for useful gene(s) to develop abiotic stress tolerant and dwarf zoysiagrass. We isolated Ycf4 gene based on the sequence from Oryza sativa Japonica through RT-PCR and RACE PCR. Ultimately, open reading frame (ORF) of ZjYcf4 was 558bp long, encoding a protein of 186 amino acid residues. NCBI blast results showed that the ZjYcf4 protein is evolutionarily closely related to Ycf4 protein from Zoysia macrantha and Setaria italica (100% and 98%, respectively). To determine whether ZjYcf4 was involved in environmental stress in wild-type zoysiagrass, expression patterns of the gene were analyzed by real-time PCR under salt, cold and dark conditions. They were analyzed after each stress treatment for 3 hours. In salt and cold stresses, the expression was higher compared to control (3-fold and 1.5-fold, respectively), although there was a 1.6-fold decrease in expression under dark stress treatment. As reported previously, we suggest that ZjYcf4 gene affects abiotic stress such as salt, cold and dark.

  • PDF

Direct Interaction Between Akt1 and Gcn5 and its Plausible Function on Hox Gene Expression in Mouse Embryonic Fibroblast Cells

  • Oh, Ji Hoon;Lee, Youra;Kong, Kyoung-Ah;Kim, Myoung Hee
    • 대한의생명과학회지
    • /
    • 제19권3호
    • /
    • pp.266-269
    • /
    • 2013
  • Hox genes encode transcription factors important for anterior-posterior body patterning at early stages of embryonic development. However, the precise mechanisms by which signal pathways are stimulated to regulate Hox gene expression are not clear. In the previous study, protein kinase B alpha (Akt1) has been identified as a putative upstream regulator of Hox genes, and Akt1 has shown to regulate Gcn5, a prototypical histone acetyltransferase (HAT), in a negative way in mouse embryonic fibroblast (MEF) cells. Since the activity of HAT such as the CBP/p300, and PCAF (a Gcn5 homolog), was down-regulated by Akt through a phosphorylation at the Akt consensus substrate motif (RXRXXS/T), the amino acid sequence of Gcn5 protein was analyzed. Mouse Gcn5 contains an Akt consensus substrate motif as RQRSQS sequence while human Gcn5 does not have it. In order to see whether Akt1 directly binds to Gcn5, immunoprecipitation with anti-Akt1 antibody was carried out in wild-type (WT) mouse embryonic fibroblast (MEF) cells, and then western blot analysis was performed with anti-Akt1 and anti-Gcn5 antibodies. Gcn5 protein was detected in the Akt1 immunoprecipitated samples of MEFs. This result demonstrates that Akt1 directly binds to Gcn5, which might have contributed the down regulation of the 5' Hoxc gene expressions in wild type MEF cells.

Identification of SNPs tightly linked to the QTL for pod shattering in soybean[Glycine max (L.) Merr.]

  • Kim, Kyung-Ryun;Kim, Kyung Hye;Go, Hong Min;Lee, Ju Seok;Moon, Jung-Kyung;Ha, Bo-Keun;Jeong, Soon-Chun;Kim, Namshin;Kang, Sungtaeg
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.146-146
    • /
    • 2017
  • The pod shattering or dehiscence is essential for the propagation of pod-bearing plant species in the wild, but it causes significant yield losses during harvest of domesticated crop plants. Identifying novel molecular makers, which are linked to seed-shattering genes, is needed to employ the molecular marker-assisted selection for efficiently developing shattering-resistant soybean varieties. In this study, a genetic linkage map was constructed using 115 recombinant inbred lines (RILs) developed from crosses between the pod shattering susceptible variety, Keunol, and resistant variety, Sinpaldal. A 180 K Axiom(R) SoyaSNPs data and pod shattering data from two environments in 2001 and 2015 were used to identify quantitative trait loci (QTL) for pod shattering. A major QTL was identified between two flanking single nucleotide polymorphism (SNP) markers, AX-90320801 and AX-90306327 on chromosome 16 with 1.3 cM interval, 857 kb of physical range. In sequence, genotype distribution analysis was conducted using extreme phenotype RILs. This could narrow down the QTL down to 153 kb on the physical map and was designated as qPDH1-KS with 6 annotated gene models. All exons within qPDH1-KS were sequenced and the 6 polymorphic SNPs affecting the amino acid sequence were identified. To develop universally available molecular markers, 38 Korean soybean cultivars were investigated by the association study using the 6 identified SNPs. Only two SNPswere strongly associated with the pod shattering. These two identified SNPs will help to identify the pod shattering responsible gene and to develop pod shattering-resistant soybean plants using marker-assisted selection.

  • PDF

Identification of a Sequence Containing Methylated Cytidine in Corynebacterium glutamicum and Brevibacterium flavum Using Bisulfite DNA Derivatization and Sequencing

  • Jang, Ki-Hyo;Chambers, Paul J.;Britz, Margaret L.
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권5호
    • /
    • pp.819-824
    • /
    • 2001
  • The principal DNA modification systems of the amino-acid-producing bacteria Corynebacterium glutamicum AS019, Brevibacterium flavum BF4, and B. lactofermentum BL1 was investigated using two approaches; digestion of plasmid DNA isolated from these species TseI and Fnu4HI, and sequence analysis of the putative methyltransferase target sites following the derivatization of DNA using metabisulfite treatment. The C. glutamicum and B. flavum strains showed similar digestion patterns to the two enzymes, indicating that the target for cytidine methyltransferase recognizes 5'-GCSGC-3'(where S is either G or C). Mapping the methylated cytidine sites by bisulfite derivatization, followed by PCR amplification and sequencing, was only possible when the protocol included an additional step eliminating any underivatized DNA after PCR amplification, thereby indicating that the derivatization was not $100\%$ efficient. This may have been due to the high G0C content of this genus. It was confirmed that C. glutamicum AS019 and B. flavum BF4 methylated the cytidine in the $Gm^5CCGC$ sequences, yet there were no similar patterns of methylation in B. lactofermentum, which was consistent with the distinctive degradation pattern seen for the above enzymes. These findings demonstrate the successful application of a modified bisulfite derivatization method with the Corynebacterium species for determining methylation patterns, and showed that different species in the geneus contain distinctive restriction and modification systems.

  • PDF

Molecular Characterization and Expression of LDHA and LDHB mRNA in Testes of Japanese Quail (Coturnix japonica)

  • Singh, R.P.;Sastry, K.V.H.;Pandey, N.K.;Shit, N.G.;Agarwal, R.;Singh, R.;Sharma, S.K.;Saxena, V.K.;Jagmohan, Jagmohan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권8호
    • /
    • pp.1060-1068
    • /
    • 2011
  • The LDH isozymes are key catalysts in the glycolytic pathway of energy metabolism. It is well known that the distribution of the LDH isozymes vary in accordance with the metabolic requirements of different tissues. The substrates required for energy production change noticeably at successive stages of testes development suggesting a significant flexibility in the expression of glycolytic enzymes. Therefore, expression of LHDA and LDHB mRNAs was examined in adult and prepubertal quail testis. The mRNA of both LDHA and LDHB were expressed and no significant difference was observed in prepubertal testes. The mRNA levels of LDHB significantly increased during testicular development. In the adult testis, LDHA mRNA was not expressed. Expression studies revealed the presence of different LDH isozymes during testicular development. In contrast, electrophoresis of both testicular samples revealed only single band at a position indicative of an extreme type of LDH isozyme in quail testes. Furthermore, nucleotide and amino acid sequence analysis revealed significant similarity to chicken, duck and rock pigeon. These sequence results confirmed the similarity of LDHA and LDHB subunit protein in different avian species.

Characterization of Lipases from Staphylococcus aureus and Staphylococcus epidermidis Isolated from Human Facial Sebaceous Skin

  • Xie, Winny;Khosasih, Vivia;Suwanto, Antonius;Kim, Hyung-Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권1호
    • /
    • pp.84-91
    • /
    • 2012
  • Two staphylococcal lipases were obtained from Staphylococcus epidermidis S2 and Staphylococcus aureus S11 isolated from sebaceous areas on the skin of the human face. The molecular mass of both enzymes was estimated to be 45 kDa by SDS-PAGE. S2 lipase displayed its highest activity in the hydrolysis of olive oil at $32^{\circ}C$ and pH 8, whereas S11 lipase showed optimal activity at $31^{\circ}C$ and pH 8.5. The S2 lipase showed the property of cold-adaptation, with activation energy of 6.52 kcal/mol. In contrast, S11 lipase's activation energy, at 21 kcal/mol, was more characteristic of mesophilic lipases. S2 lipase was stable up to $45^{\circ}C$ and within the pH range from 5 to 9, whereas S11 lipase was stable up to $50^{\circ}C$ and from pH 6 to 10. Both enzymes had high activity against tributyrin, waste soybean oil, and fish oil. Sequence analysis of the S2 lipase gene showed an open reading frame of 2,067 bp encoding a signal peptide (35 aa), a pro-peptide (267 aa), and a mature enzyme (386 aa); the S11 lipase gene, at 2,076 bp, also encoded a signal peptide (37 aa), pro-peptide (255 aa), and mature enzyme (399 aa). The two enzymes maintained amino acid sequence identity of 98-99% with other similar staphylococcal lipases. Their microbial origins and biochemical properties may make these staphylococcal lipases isolated from facial sebaceous skin suitable for use as catalysts in the cosmetic, medicinal, food, or detergent industries.

Characteristics of a Lettuce mosaic virus Isolate Infecting Lettuce in Korea

  • Lim, Seungmo;Zhao, Fumei;Yoo, Ran Hee;Igori, Davaajargal;Lee, Su-Heon;Lim, Hyoun-Sub;Moon, Jae Sun
    • The Plant Pathology Journal
    • /
    • 제30권2호
    • /
    • pp.183-187
    • /
    • 2014
  • Lettuce mosaic virus (LMV) causes disease of plants in the family Asteraceae, especially lettuce crops. LMV isolates have previously been clustered in three main groups, LMV-Yar, LMV-Greek and LMV-RoW. The first two groups, LMV-Yar and LMV-Greek, have similar characteristics such as no seed-borne transmission and non-resistance-breaking. The latter one, LMV-RoW, comprising a large percentage of the LMV isolates contains two large subgroups, LMV-Common and LMV-Most. To date, however, no Korean LMV isolate has been classified and characterized. In this study, LMV-Muju, the Korean LMV isolate, was isolated from lettuce showing pale green and mottle symptoms, and its complete genome sequence was determined. Classification method of LMV isolates based on nucleotide sequence divergence of the NIb-CP junction showed that LMV-Muju was categorized as LMV-Common. LMV-Muju was more similar to LMV-O (LMV-Common subgroup) than to LMV-E (LMV-RoW group but not LMV-Common subgroup) even in the amino acid domains of HC-Pro associated with pathogenicity, and in the CI and VPg regions related to ability to overcome resistance. Taken together, LMV-Muju belongs to the LMV-Common subgroup, and is expected to be a seed-borne, non-resistance-breaking isolate. According to our analysis, all other LMV isolates not previously assigned to a subgroup were also included in the LMV-RoW group.