DOI QR코드

DOI QR Code

Molecular Characterization and Expression of LDHA and LDHB mRNA in Testes of Japanese Quail (Coturnix japonica)

  • Singh, R.P. (Division of Physiology and Reproduction, Central Avian Research Institute) ;
  • Sastry, K.V.H. (Division of Physiology and Reproduction, Central Avian Research Institute) ;
  • Pandey, N.K. (Division of Physiology and Reproduction, Central Avian Research Institute) ;
  • Shit, N.G. (Division of Physiology and Reproduction, Central Avian Research Institute) ;
  • Agarwal, R. (Division of Physiology and Reproduction, Central Avian Research Institute) ;
  • Singh, R. (Division of Physiology and Reproduction, Central Avian Research Institute) ;
  • Sharma, S.K. (Division of Avian Genetics and Breeding, Central Avian Research Institute) ;
  • Saxena, V.K. (Division of Avian Genetics and Breeding, Central Avian Research Institute) ;
  • Jagmohan, Jagmohan (Division of Physiology and Reproduction, Central Avian Research Institute)
  • Received : 2010.07.16
  • Accepted : 2010.11.11
  • Published : 2011.08.01

Abstract

The LDH isozymes are key catalysts in the glycolytic pathway of energy metabolism. It is well known that the distribution of the LDH isozymes vary in accordance with the metabolic requirements of different tissues. The substrates required for energy production change noticeably at successive stages of testes development suggesting a significant flexibility in the expression of glycolytic enzymes. Therefore, expression of LHDA and LDHB mRNAs was examined in adult and prepubertal quail testis. The mRNA of both LDHA and LDHB were expressed and no significant difference was observed in prepubertal testes. The mRNA levels of LDHB significantly increased during testicular development. In the adult testis, LDHA mRNA was not expressed. Expression studies revealed the presence of different LDH isozymes during testicular development. In contrast, electrophoresis of both testicular samples revealed only single band at a position indicative of an extreme type of LDH isozyme in quail testes. Furthermore, nucleotide and amino acid sequence analysis revealed significant similarity to chicken, duck and rock pigeon. These sequence results confirmed the similarity of LDHA and LDHB subunit protein in different avian species.

Keywords

References

  1. Alcivar, A. A., J. M. Trasler, L. E. Hake, K. Salehi-Ashtiani, E. Goldberg and N. B. Hecht. 1991. DNA methylation and expression of genes coding for lactate dehydrogenase A and C during rodent spermatogenesis. Biol. Reprod. 44:527-535. https://doi.org/10.1095/biolreprod44.3.527
  2. Arias, W. M., C. Mezquita and J. Mezquita. 2000. Expression of lactate dehydrogenases A and B during chicken spermatogenesis: Characterization of testis specific transcripts. J. Cell. Biochem. 79:15-27. https://doi.org/10.1002/1097-4644(2000)79:1<15::AID-JCB30>3.0.CO;2-4
  3. Benahmed, M. 1996. Growth factors and cytokines in the testis. In: Male Infertility: Clinical Investigation, Cause, Evaluation and Treatment (Ed. F. H. Comhaire). Chapman Hall. pp. 55-96.
  4. Boussouar, F. and M. Benahmed. 1999. Epidermal growth factor regulates glucose metabolism through lactate dehydrogenase A messenger ribonucleic acid expression in cultured porcine Sertoli cells. Biol. Reprod. 61:1139-1145. https://doi.org/10.1095/biolreprod61.4.1139
  5. Cahn, R. D., N. O. Kaplan, L. Levin and E. Swilling. 1962. Nature and development of lactate dehydrogenase. Science 136:962- 969. https://doi.org/10.1126/science.136.3520.962
  6. Clulow, J. and R. C. Jones. 1982. Production, transport, maturation, storage and survival of spermatozoa in the male Japanese quail. J. Reprod. Fertil. 64:259-266. https://doi.org/10.1530/jrf.0.0640259
  7. Duncan, B. D. 1955. Multiple range and multiple F tests. Biometrics 11:1-12. https://doi.org/10.2307/3001478
  8. Echigoya, Y., T. Sato, T. Itou, H. Endo and T. Sakai. 2009. Molecular characterization and expression pattern of the equine lactate dehydrogenase A and B genes. Gene 447:40-50. https://doi.org/10.1016/j.gene.2009.07.017
  9. Flaherty, C. M. O., N. B. Beorlegui and M. T. Beconi. 2002. Lactate dehydrogenase-C4 is involved in heparin- and NADHdependent bovine sperm capacitation. Andrology 34:91-97. https://doi.org/10.1046/j.0303-4569.2001.00481.x
  10. Gnessi, L., A. Fabbri and G. Spera. 1997. Gonadal peptides as mediators of development and functional control of the testis: an integrated system with hormones and local environment. Endocr. Rev. 18:541-609. https://doi.org/10.1210/er.18.4.541
  11. Griswold, M. D. 1995. Interactions between germ cells and sertoli cells in the testis. Biol. Reprod. 52:211-216. https://doi.org/10.1095/biolreprod52.2.211
  12. Grootegoed, J. A. and P. J. Den Boer. 1989. Energy metabolism in spermatids: a review. In: Cellular and Molecular Events in Spermiogenesis (Ed. D. W. Hamilton and G. H. M. Waites). Cambridge University Press. pp. 193-215.
  13. Grootegoed, J. A., R. B. Oonk, R. Jansen and H. J. Van der Molen. 1986. Metabolism of radiolabelled energy yielding substrates by rat sertoli cells. J. Reprod. Fertil. 77:109-118. https://doi.org/10.1530/jrf.0.0770109
  14. Imagawa, T., E. Yamamoto, M. Sawada, M. Okamoto and M. Uehara. 2006. Expression of lactate dehydrogenase-A and B messenger ribonucleic acid in chick glycogen body. Poult. Sci. 85:1232-1238. https://doi.org/10.1093/ps/85.7.1232
  15. Jungmann, R. A., D. Huang and D. Tian. 1998. Regulation of LDH-A gene expression by transcriptional and posttranscriptional signal transduction mechanism. J. Exp. Zool. 282:188-195. https://doi.org/10.1002/(SICI)1097-010X(199809/10)282:1/2<188::AID-JEZ21>3.0.CO;2-P
  16. Jutte, N. H. P. M., J. A. Grootegoed, F. F. G. Rommerts and H. J. Van der Molen. 1981. Exogenous lactate is essential for metabolic activities in isolated rat spermatocytes and spermatids. J. Reprod. Fertil. 62:399-405. https://doi.org/10.1530/jrf.0.0620399
  17. Korn, N., R. J. Thurston, B. P. Pooser and T. R. Scott. 2000. Ultra structure of spermatozoa from Japanese quail. Poult. Sci. 79:86-93. https://doi.org/10.1093/ps/79.1.86
  18. Li, S. S., W. M. Fitch, Y. C. Pan and F. S. Sharief. 1983. Evolutionary relationships of vertebrate lactate dehydrogenase isozymes A4 (muscle), B4 (heart), and C4 (testis). J. Biol. Chem. 258:7029-7032.
  19. Markert, C. L. 2004. Lactate dehydrogenase: biochemistry and function of lactate dehydrogenase. Cell Biochem. Funct. 2:131-134.
  20. Markert, C. L., J. B. Shaklee and G. S. Whitt. 1975. Evolution of a gene. Multiple genes for LDH isozymes provide a model of the evolution of gene structure, function and regulation. Science 189:102-114. https://doi.org/10.1126/science.1138367
  21. Mita, M. and P. F. Hall. 1982. Metabolism of round spermatid from rats: Lactate as the preferred substrate. Biol. Reprod. 26:445-455. https://doi.org/10.1095/biolreprod26.3.445
  22. Nakamura, M., S. Okinaga and K. Arai. 1984. Metabolism of pachytene primary spermatocytes from rat testes: Pyruvate maintenance of adenosine triphosphate level. Biol. Reprod. 30: 1187-1197. https://doi.org/10.1095/biolreprod30.5.1187
  23. Salehi-Ashtiani, K. and E. Goldberg. 1995. Expression profile of Ldh-a in the developing rat Rattus norvegicus testis suggests regulation at the translational level. Comp. Biochem. Physiol. B. 110:623-627. https://doi.org/10.1016/0305-0491(94)00158-Q
  24. Sharpe, R. M. 1994. Regulation of spermatogenesis. In: The Physiology of Reproduction II (Ed. E. Knobil and J. D. Neill). New York, Raven Press. pp. 1363-1434.
  25. Singh, R. P., K. V. H. Sastry, N. Shit, N. K. Pandey, R. Agarawal, K. B. Singh, J. Mohan, V. K. Saxena and R. P. Moudgal. 2011a. Characterization of lactate dehydrogenase enzyme from semen of Japanese quail (Coturnix coturnix japonica). Theriogenology 75:555-562. https://doi.org/10.1016/j.theriogenology.2010.09.026
  26. Singh, R. P., K.V. H. Sastry, N. K. Pandey, N. Shit, K. B. Singh, J. Mohan and R. P. Moudgal. 2011b. Cloacal gland foam enhances motility and disaggregation of spermatozoa in Japanese quail (Coturnix japonica). Theriogenology 75:563- 569. https://doi.org/10.1016/j.theriogenology.2010.09.028
  27. Singh, R. P., N. Shit, N. K. Pandey, R. Agarawal, K. V. H. Sastry, K. B. Singh, J. Mohan and R. P. Moudgal. 2010. Electrophoretic seperation and characterization of LDH isozymes in Japanese quail brain. Ind. J. Poult. Sci. 45(1):55- 58.
  28. Skidmore, A. F. and T. J. C. Beebee. 1991. Changes in testicular lactate dehydrogenases of the rat (Rattus norvegicus) during growth and development. Comp. Biochem. Physiol. B. 98:279- 282. https://doi.org/10.1016/0305-0491(91)90179-H
  29. Sundaresan, N. R., K. A. Ahmed, V. K. Saxena, , K. V. H. Sastry, M. Saxena, A. B. Pramod, M. Nath, K. B. Singh, T. J. Rasool, A. K. Devroy and R. V. Singh. 2005. Differential expression of inducible nitric oxide synthase and cytokine mRNA in chicken lines divergent for cutaneous hypersensitivity response. Vet. Immunol. Immunopathol. 108:373-385. https://doi.org/10.1016/j.vetimm.2005.06.011
  30. Thomas, K., J. D. Mazo, P. Eversole, A. Bellve, Y. Hiraoka, S. L. LI. Steven and S. Melvin. 1990. Development regulation of expression of the lactate dehydrogenase (LDH) multigene family during mouse spermatogenesis. Development 109:483- 493.
  31. Trigun, S. K., A. P. Singh, R. K. Asthana, S. M. Pandey, P. Pandey, S. K. Singh and S. P. Singh. 2006. Assessment of bioactivity of a Fischerella species colonizing Azadirachta Indica (neem) Bark. Appl. Ecol. Environ. Res. 4:119-128. https://doi.org/10.15666/aeer/0401_119128
  32. Zinkham, W. H., A. Blanco and L. Kupchyk. 1964. Lactate dehydrogenase in pigeon testes: Genetic control by three loci. Science 144:1353-1354. https://doi.org/10.1126/science.144.3624.1353

Cited by

  1. Effect of in ovo injection of threonine on immunoglobulin A gene expression in the intestine of Japanese quail at hatch vol.101, pp.1, 2016, https://doi.org/10.1111/jpn.12543
  2. Chicken sperm transcriptome profiling by microarray analysis vol.59, pp.3, 2011, https://doi.org/10.1139/gen-2015-0106
  3. Effect of hyperglycemia on fertility in streptozotocin-induced diabetic male Wistar rats: focus on glucose transporters and oxidative stress vol.30, pp.3, 2011, https://doi.org/10.13181/mji.oa.214635