• 제목/요약/키워드: amino acid metabolism

Search Result 324, Processing Time 0.032 seconds

Influence of light Regime on Nitrate Reductase Activity and Organic and norganic Solute Composition of Four Sedges (Carex spp.)

  • Choo, Yeon-Sik;Roland-Albert;Song, Seung-Dal
    • Animal cells and systems
    • /
    • v.2 no.4
    • /
    • pp.455-462
    • /
    • 1998
  • A survey was conducted on the inorganic and organic solute patterns of plants in connection with nitrate metabolism according to different light regimes (1.9, 16.0, 91.5 $Wm^{-2}$). Besides measuring in vivo NRA, we also quantitatively analyzed ater-soluble inorganic ions, organic acids, low molecular weight carbohydrates, amino aciss and total N (% DW). Among 4 Carex species, C. pilosa is known as shade-adapted species and the others as half (C. gracilis) to full (C. rostrata & C. distans) light-adapted species. Compared to species adapted to high light intensity, shade-adapted C. pilosa showed reduced productivity under the highest light intensity. In general, nitrate and amino acid levels decreased at higher light intensity, while sugar and organic acid concentrations increased. In C. pilosa osmolality tended to rise with increasing light intensity, while in the other species it tended to fall. Under low light intensity, the drop in soluble carbohydrate contents is osmotically compensated for by an enhanced nitrate concentration. It is concluded that competition between nitrate and $CO_2$reduction for reductants and ATP from photosynthesis may have important ecological consequences for the adaptation of plants to low or high light conditions. Additionally, the patterns of ionic changes due to increased light intensities were essentially the same in all selected species, indicating similar characteristics of heir mineral ion and organic acid metabolism as well as in field-grown Carex species.

  • PDF

Effects of Dietary Energy Concentration and Lysine on the Digestible Energy Ratio for Apparent Amino Acid Digestibility in Finishing Barrows

  • Cho, S.B.;Lee, H.J.;Chung, I.B.;Long, H.F.;Lim, J.S.;Kim, Y.Y.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.2
    • /
    • pp.232-236
    • /
    • 2008
  • This experiment was performed to investigate the effects of two energy levels and four lysine:digestible energy (DE) ratios on the apparent digestibility of nutrients in finishing pigs. The experiment was conducted using a $2{\times}4$ randomized complete block (RCB) design with three replicates. Twenty-four cross-bred finishing barrows ((Landrace${\times}$Yorkshire)${\times}$Duroc) with an average body weight of $64.2{\pm}0.69kg$ were assigned to one of eight treatments. Each barrow was placed in an individual metabolism crate and dietary treatment and water was provided ad libitum. Diets were designed to contain lysine:ME ratios of 1.5, 1.8, 2.1 and 2.4 g/Mcal at 3.35 and 3.6 Mcal/kg of diet in a $4{\times}2$ factorial arrangement. Dry matter (DM), ash, Ca and P digestibility were not affected by energy density or lysine:DE ratios. Crude fat digestibility increased as the energy density increased from 3.35 to 3.6 Mcal of DE/kg. Increasing the lysine:DE ratio also increased crude protein digestibility. There were no interactions between energy density and lysine:DE ratio in terms of nutrient digestibility. Nitrogen excretion via feces was not affected by energy density and lysine:DE ratio, while nitrogen excretion via urine was significantly affected by energy density and lysine:DE ratio. The apparent digestibility of all amino acids except for isoluecine, arginine and aspartic acid as well as average values of essential amino (EAA), non-essential amino acids (NEAA) and total amino acid digestibility (p>0.05) were not affected by energy density. The apparent digestibility of all amino acids except for leucine, proline, alanine and tyrosine, NEAA and total amino acid digestibility were significantly affected by lysine: DE ratio (p<0.05). Interactive effects of energy and lysine:DE ratio also significantly affected amino acid digestibility except for isoleucine, alanine, cystine, leucine, phenylalanine, glutamine and proline (p<0.05). In conclusion, these results suggest that maintaining the appropriate lysine:DE ratio becomes more important as the energy density of the diet increases. Consequently, increasing the lysine:DE ratio can result in increased crude protein digestibility and urinary nitrogen excretion, although apparent protein digestibility and nitrogen excretion were not affected by energy density Furthermore, increasing the lysine:DE ratio also increased the apparent digestibility of essential amino acids, except for leucine, regardless of energy density. The optimum lysine:DE ratio for maximum essential amino acid digestibility of the $64.2{\pm}0.69kg$ pig is approximately 2.4 g of lysine/Mcal of DE.

Metabolic Regulation of Homocysteine in Type 2 Diabetic Goto-Kakizaki Rats (당뇨병 Goto-Kakizaki 랫트에서 호모시스테인의 대사조절)

  • Oh, Jung-Min;Yeo, Su-Jeong;Kim, Bong-Hee;Kim, Sang-Kyum
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.2 s.57
    • /
    • pp.165-170
    • /
    • 2007
  • Elevation of homocysteine levels is a risk factor for cardiovascular diseases and liver diseases. It has been reported that both streptozotocin-induced type I diabetic rats and obese type II diabetic rats have plasma total homocysteine lower than each control rats. We determined the effects of lean type II diabetes on homocysteine levels using type 2 diabetic Goto-Kakizaki rats. The concentrations of serum glucose were increased to ${\sim}two-fold$ of control levels and the total cholesterol levels were also increased in GK rats. Hepatic aspartate, histidine, threonine, alanine and methionine levels were significantly increased in GK rats. Plasma aspartate and glutamate levels were elevated, but threonine and arginine levels were decreased in GK rats. Plasma total homocysteine levels were not changed in GK rats, but hepatic total homocysteine levels were increased to ${\sim}three-fold$ of control levels. These results suggest that hepatic metabolism of sulfur-amino acid may be altered in diabetic condition.

Aspartate-glutamate carrier 2 (citrin): a role in glucose and amino acid metabolism in the liver

  • Milan Holecek
    • BMB Reports
    • /
    • v.56 no.7
    • /
    • pp.385-391
    • /
    • 2023
  • Aspartate-glutamate carrier 2 (AGC2, citrin) is a mitochondrial carrier expressed in the liver that transports aspartate from mitochondria into the cytosol in exchange for glutamate. The AGC2 is the main component of the malate-aspartate shuttle (MAS) that ensures indirect transport of NADH produced in the cytosol during glycolysis, lactate oxidation to pyruvate, and ethanol oxidation to acetaldehyde into mitochondria. Through MAS, AGC2 is necessary to maintain intracellular redox balance, mitochondrial respiration, and ATP synthesis. Through elevated cytosolic Ca2+ level, the AGC2 is stimulated by catecholamines and glucagon during starvation, exercise, and muscle wasting disorders. In these conditions, AGC2 increases aspartate input to the urea cycle, where aspartate is a source of one of two nitrogen atoms in the urea molecule (the other is ammonia), and a substrate for the synthesis of fumarate that is gradually converted to oxaloacetate, the starting substrate for gluconeogenesis. Furthermore, aspartate is a substrate for the synthesis of asparagine, nucleotides, and proteins. It is concluded that AGC2 plays a fundamental role in the compartmentalization of aspartate and glutamate metabolism and linkage of the reactions of MAS, glycolysis, gluconeogenesis, amino acid catabolism, urea cycle, protein synthesis, and cell proliferation. Targeting of AGC genes may represent a new therapeutic strategy to fight cancer.

Prolyl Endopeptidase Inhibitory Activity of 6-O-Palmitoyl L-Ascorbic Acid

  • Park, Yoon-Seok;Paik, Young-Sook
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.3
    • /
    • pp.110-113
    • /
    • 2006
  • Prolyl endopeptidase (PEP, EC 3.4.21.26, also referred to as prolyl oligopeptidase) degrades proline containing, biologically active neuropeptides such as vasopressin, substance P and thyrotropin-releasing hormone by cleaving peptide bonds on carboxyl side of prolyl residue within neuropeptides of less than 30 amino acids. Evaluation of PEP levels in postmortem brains of Alzheimer's disease patients revealed significant increases in PEP activity. Therefore, a specific PEP inhibitor can be a good candidate of drug against memory loss. Upon our examination for PEP inhibitory activity from micronutrients, ascorbic acid (vitamin C) showed small but significant PEP inhibition (13% PEP inhibition at $8{\mu}g{\cdot}ml^{-1}$). Palmitic acid showed almost no PEP inhibition. However, 6-O-palmitoyl ascorbic acid ($\underline{1}$) showed 70% PEP inhibition at $8{\mu}g{\cdot}ml^{-1}$ indicating that hydrophobic portion of the compound $\underline{1}$ may facilitate the inhibitory effect. $IC_{50}$ value of compound $\underline{1}$ was $12.6{\pm}0.2{\mu}M$. The primary and secondary Lineweaver Burk and Dixon plots for compound $\underline{1}$ indicated that it is a non-competitive inhibitor with inhibition constant (Ki) value of $23.7{\mu}M$.

Function of Global Regulator CodY in Bacillus thuringiensis BMB171 by Comparative Proteomic Analysis

  • Qi, Mingxia;Mei, Fei;Wang, Hui;Sun, Ming;Wang, Gejiao;Yu, Ziniu;Je, Yeonho;Li, Mingshun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.152-161
    • /
    • 2015
  • CodY is a highly conserved protein in low G+C gram-positive bacteria that regulates genes involved in sporulation and stationary-phase adaptation. Bacillus thuringiensis is a grampositive bacterium that forms spores and parasporal crystals during the stationary phase. To our knowledge, the regulatory mechanism of CodY in B. thuringiensis is unknown. To study the function of CodY protein in B. thuringiensis, BMB171codY- was constructed in a BMB171 strain. A shuttle vector containing the ORF of cry1Ac10 was transformed into BMB171 and BMB171codY-, named BMB171cry1Ac and BMB171codY-cry1Ac, respectively. Some morphological and physiological changes of codY mutant BMB171codY-cry1Ac were observed. A comparative proteomic analysis was conducted for both BMB171codY-cry1Ac and BMB171cry1Ac through two-dimensional gel electrophoresis and MALDI-TOF-MS/MS analysis. The results showed that the proteins regulated by CodY are involved in microbial metabolism, including branched-chain amino acid metabolism, carbohydrate metabolism, fatty acid metabolism, and energy metabolism. Furthermore, we found CodY to be involved in sporulation, biosynthesis of poly-β-hydroxybutyrate, growth, genetic competence, and translation. According to the analysis of differentially expressed proteins, and physiological characterization of the codY mutant, we performed bacterial one-hybrid and electrophoretic mobility shift assay experiments and confirmed the direct regulation of genes by CodY, specifically those involved in metabolism of branched-chain amino acids, ribosomal recycling factor FRR, and the late competence protein ComER. Our data establish the foundation for in-depth study of the regulation of CodY in B. thuringiensis, and also offer a potential biocatalyst for functions of CodY in other bacteria.

Molecularr Analysis of $\alpha$-Glucosidase from Microorganism

  • Kimura, Atsuo
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.73-76
    • /
    • 2001
  • $\alpha$-Glucosidase contributing $\alpha$-glucan metabolism in microorganisms is characterized by the variety in substrate recognition. Recent studies on microbial enzymes show that $\alpha$-glucosidases are divided into two groups, family I and family n, in which family I enzymes have four conserved catalytic-regions of $\alpha$-amylase family. The presentation focusing on the difference of the $\alpha$-glucosidase families reviews i) the catalytic amino-acid residues of nucleophile and acid/base catalyst, and ii) the molecular evolution of two families.

  • PDF

Adaptive Significance of Changes in the Biochemical Constituents of Haemolymph to Imposed Thermal Stress on Seleted Races of the Silkworm, Bombyx mori L.

  • Malik Firdose Ahmad;Reddy Y. Srinivasa
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.12 no.2
    • /
    • pp.75-80
    • /
    • 2006
  • Changes in the levels of protein and free amino acids in the haemolymph of three selected races of the silkworm, Bombyx mori viz., PM, $NB_4D_2$ and $CSR_2$, were investigated during 4th moult, 5th instar and pupal period. The levels of total protein in the haemolymph, increased from first day of 5th instar till sixth day. From seventh day till spinning, the protein levels decreased in all the three races. A sustained decrease in the haemolymph proteins was observed during the pupal development in all the three races. The levels of free amino acids, which were high during 4th moult, declined through the 5th age of larval development till spinning. PM showed a relatively higher free amino acid level (3.192 mg/ml) in haemolymph followed by $NB_4D_2$ (2.601 mg/ml) and $CSR_2$ (2.35 mg/ml). The free amino acid levels decreased gradually from prepupal stage but increased again at the end of pupal period. Racial differences in the changes in the levels of protein and free amino acids in the haemolymph were observed in the larvae and pupae when subjected to two high temperature regimes of $30^{\circ}C$ and $35^{\circ}C$. The results showed that high temperature induces specific changes in the metabolism (reversible thermal stress) that have different adaptive value in different races of the silkworm. Relatively higher increase in the free amino acid levels in the haemolymph of Pure Mysore presumably provides protective cover to tissues against high temperature by an increase in osmolarity and reduction in evaporative water loss. The absence of such a mechanism may be responsible for temperature susceptibility of the bivoltine races like $NB_4D_2$ and $CSR_2$.

Direct Monitoring of Membrane Fatty Acid Changes and Effects on the Isoleucine/Valine Pathways in an ndgR Deletion Mutant of Streptomyces coelicolor

  • Tae-Rim Choi;Suk Jin Oh;Jeong Hyeon Hwang;Hyun Jin Kim;Nara Shin;Jeonghee Yun;Sang-Ho Lee;Shashi Kant Bhatia;Yung-Hun Yang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.724-735
    • /
    • 2023
  • NdgR, a global regulator in soil-dwelling and antibiotic-producing Streptomyces, is known to regulate branched-chain amino acid metabolism by binding to the upstream region of synthetic genes. However, its numerous and complex roles are not yet fully understood. To more fully reveal the function of NdgR, phospholipid fatty acid (PLFA) analysis with gas chromatography-mass spectrometry (GC-MS) was used to assess the effects of an ndgR deletion mutant of Streptomyces coelicolor. The deletion of ndgR was found to decrease the levels of isoleucine- and leucine-related fatty acids but increase those of valine-related fatty acids. Furthermore, the defects in leucine and isoleucine metabolism caused by the deletion impaired the growth of Streptomyces at low temperatures. Supplementation of leucine and isoleucine, however, could complement this defect under cold shock condition. NdgR was thus shown to be involved in the control of branched-chain amino acids and consequently affected the membrane fatty acid composition in Streptomyces. While isoleucine and valine could be synthesized by the same enzymes (IlvB/N, IlvC, IlvD, and IlvE), ndgR deletion did not affect them in the same way. This suggests that NdgR is involved in the upper isoleucine and valine pathways, or that its control over them differs in some respect.

Proteomic Study for Low Molecular Weight Peptides in the Mealworm Tenebrio molitor (갈색거저리 유래 저분자단백질체의 분석)

  • Kim, Il-Suk;Bang, Woo Young;Bang, Kyu Ho;Kim, Sam Woong
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.219-222
    • /
    • 2021
  • In this study, we examined low molecular weight peptides using proteomics in order to identify their original proteins, derive their peptides, and determine the functions of the proteins in Tenebrio molitor, the mealworm (larvae, pupae, or adult) from which the peptides were extracted. Fifty-four proteins were finally identified through an analysis of proteome to derive the analyzed peptides. The proteins that induced low molecular weight peptides were identified to be the most abundant in adults only, and the next highest were derived from a group containing both adults and larva. However, other groups, including pupa, were detected to have a lower frequency of peptides. As a result of orthologous classification of the detected proteins, the general function prediction was only investigated at the highest frequency among the examined proteins. Proteins related to chromatin structure and dynamics were detected by their higher frequency among functional classes. The next highest frequency was shown by proteins related to amino acid transport and metabolism and carbohydrate transport and metabolism. Therefore, it is assumed that proteins correlated with chromatin, amino acid, and carbohydrate metabolisms are easily induced into low molecular weight peptides, and that their peptides could play a role as bioactive substances.