• Title/Summary/Keyword: amino acid derivatives

Search Result 214, Processing Time 0.025 seconds

Study on the Molecular Structures of ${\omega}-Amino$ Acid, Derivatives (오메가 아미노산(酸) 유도체(誘導體)의 분자구조(分子構造)에 관(關)한 연구(硏究))

  • Kim, Yang-Bae;Lah, Woon-Lyong;Yu, Byung-Sul;Kim, Chong-Kook
    • Journal of Pharmaceutical Investigation
    • /
    • v.12 no.3
    • /
    • pp.64-73
    • /
    • 1982
  • Molecular structures of ${\omega}-Amino$ acids, ${\omega}-Aminosulfonic$ acids and their ${\beta}-hydroxy$ substituted compounds were determined by X-ray diffraction method, and the similarities and differences between their molecular structures or between related compounds were discussed.

  • PDF

The Molecular Modeling of Novel Inhibitors of Protein Tyrosine Phosphatase 1B Based on Catechol by MD and MM-GB (PB)/SA Calculations

  • Kocakaya, Safak Ozhan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1769-1776
    • /
    • 2014
  • Binding modes of a series of catechol derivatives such as protein tyrosine phosphatase 1B (PTP1B) inhibitors were identified by molecular modeling techniques. Docking, molecular dynamics simulations and free energy calculations were employed to determine the modes of these new inhibitors. Binding free energies were calculated by involving different energy components using the Molecular Mechanics-Poisson-Boltzmann Surface Area and Generalized Born Surface Area methods. Relatively larger binding energies were obtained for the catechol derivatives compared to one of the PTP1B inhibitors already in use. The Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) free energy decomposition analysis indicated that the hydroxyl functional groups and biphenyl ring system had favorable interactions with Met258, Tyr46, Gln262 and Phe182 residues of PTP1B. The results of hydrogen bound analysis indicated that catechol derivatives, in addition to hydrogen bonding interactions, Val49, Ile219, Gln266, Asp181 and amino acid residues of PTP1B are responsible for governing the inhibitor potency of the compounds. The information generated from the present study should be useful for the design of more potent PTP1B inhibitors as anti-diabetic agents.

Docking Studies on Formylchromone Derivatives as Protein Tyrosine Phosphatase 1B (PTP1B) Inhibitors

  • Kim, Chan-Kyung;Lee, Kyung-A;Zhang, Hui;Cho, Hyeong-Jin;Lee, Bon-Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.7
    • /
    • pp.1141-1150
    • /
    • 2007
  • Molecular modeling study has been performed to assist in the design of PTP1B inhibitors using FlexX. FlexX dockings with 19 test ligands, whose structures have been determined by X-ray crystallography, were successful in reproducing the experimental conformations within the protein. An increase in biological activity is observed as hydrophobic character of formylchromone derivatives increases. Most ligands bind to the activesite regions of the protein successfully in two different score runs. The Drug score run gave better results than the FlexX score run based on the score, rank, binding modes and bond distance of docked structures. Consensus values from the CScore scoring function are between 3 and 5, suggesting that the scoring scheme is reliable. All formylchromone inhibitors considered in this work show unidirectional binding modes in the active site pocket, which is contrary to the bidirectional X-ray results by Malamas et al. and amino acid residues responsible for such orientation are identified to help further development of the inhibitors.

Synthesis of (5R,8R)-2-(3,8-Dimethyl-2-oxo-1,2,4,5,6,7,8,8α-octahydroazulen-5-yl) Acrylic Acid (Rupestonic Acid) Amide Derivatives and in vitro Inhibitive Activities against Influenza A3,B and Herpes Simplex Type 1 and 2 Virus

  • Yong, Jian-Ping;Lv, Qiao-Ying;Aisa, Haji Akber
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.435-440
    • /
    • 2009
  • 19 Aromatic ring and L-amino acid ester contained rupestonic acid amide derivatives 2a~2l, 3a~3g were synthesized and preliminarily evaluated in vitro against influenza virus $A_3$,B and herpes simplex virus type 1 (HSV-1), 2(HSV-2) by the national center for drug screening of China. The rusults showed that 2i possessed the highest inhibition against both influenza virus $A_3\;(TC_{50}\;=\;120.6\;{\mu}mol/L,\;IC_{50}=\;19.2\;{\mu}$mol/L, SI = 6.3) and B (T$C_{50}\;=\;120.6\;{\mu}mol/L,\;IC_{50}=\;29.9\;{\mu}$mol/L, SI = 4.0); 2g was more active against influenza $A_3$ virus at very low cytotoxicity ($TC_{50}\;>\;2092.1\;{\mu}mol/L,\;IC_{50}=\;143.7\;{\mu}mol/L,$ SI > 14.6) than the parent compound; Compounds 2b, 2c, 2f showed higher activities both against HSV-1 and HSV-2 than that of the parent compound, and 2f was the most potent inhibitor of HSV-1 ($TC_{50}\;=\;200.0\;{\mu}mol/L,\;IC_{50}\;=\;11.3\;{\mu}mol$/L, SI = 17.7 ) and HSV-2 ($TC_{50}\;=\;200.0\;{\mu}mol/L,\;IC_{50}\;=\;20.7\;{\mu}mol$/L , SI = 9.7).

Studies on Preparation and Quality of Oyster(Crassostrea gigas), Sea mussel(Mytilus coruscus) and Crab(Portanus tribuerculata) Extracts by Water Extraction (열수추출(熱水抽出)에 의한 어패류 추출물의 제조 및 품질)

  • Kim, Dong-Soo;Lee, Young-Chul;Kim, Young-Dong;Kim, Young-Myoung
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.385-391
    • /
    • 1988
  • In an attempt to develop natural seasoning materials by use of shellfishes and crustaceans, contents of taste components such as amino acids, nucleotide and its derivatives, the extractability of oyster (Crassostrea gigas), sea mussel(Mytilus coruscus) and crab(Portanus tribuerculata) were investigated. As a result of chemical analysis and sensory evaluation, the optimum condition of extraction could be concluded as extracting fresh or frozen raw materials for about 40 min. at $95^{\circ}C$ with 1.5 to 2 times of water by volume. The contents of free amino acids in the extractions were much in sequence as crab(1,886 mg%), mussel(765 mg%) and oyster(554 mg%), and the dominant amino acids in each extracts were identified as glutamic acid, alanine, glycine, proline and arginine in oyster, threonine, alanine, arginine, glycine and glutamic acid in mussel, arginine, proline, lysine, alanine and threonine in crab respectively. In addition, the major nucleotides affecting as taste enhancer of each extracts were estimated as inosine in oyster and crab, and inosine monophosphate in mussel respectively.

  • PDF

Applied Analysis for Metabolic Profiling of Trace-level Amino Acid in Biological Fluid (생체시료 중 미량 아미노산 대사 프로필을 위한 분석법 응용)

  • Nam, Hyung Wook;Park, Song-Ja;Pyo, Hee Soo;Paeng, Ki Jung
    • Analytical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.349-357
    • /
    • 2003
  • The universality of low molecular weight metabolites (i.e. amino acids, steroid hormones) allows rapid and straightforward investigation of biochemistry of genetically un-characterized species. Thus in vivo metabolic profiling of amino acid in combination with multivariate data analysis (metabolomics) offers great potential in comparative biology. In this paper, amino acid profiles in biological fluid (media) were studied by using HPLC/FLD. HPLC procedure for amino acids require the formation of derivatives due to the low absorption of the free compounds. o-Phthalaldehyde (OPA) used in association with a thiol, such as 3-mercaptopropionic acid (3-MPA), is one of the most popular and sensitive reagents, which yield quickly fluorescent iso-indoles at room temperature. To improve unstability of OPA/3-MPA derivatization, we optimized injector programs for fixed injection times. Linear regressions for the standard curves were linear in the range 0.5 - 100.0 ppb, giving correlation coefficents above 0.99. The detection limit were 1.70 pmol(GLU) - 23.81 pmol(SER). It is practically useful when the amount of sample is very low on single cells.

Synthesis of 1,4-Dihydropyridine-5-Formyl Derivatives (1,4-Dihydropyridine-5-Formyl 유도체의 합성)

  • Hong, You-Hwa;Suh, Jung-Jin
    • YAKHAK HOEJI
    • /
    • v.33 no.5
    • /
    • pp.290-295
    • /
    • 1989
  • 2,6-Dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3-carboxylic acid methyl ester (1) was formylated to 2,6-dimethy-4-(3'-nitrophenyl)-5-formyl-1,4-dihydropyridine-3-carboxylic acid methyl ester (2) in 76% yield. At the elevated temperature, 2,6-dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3-monomethyl ester (3) was also converted into compound 2 in 46% yield. The compound 2 was reduced to 2,6-dimethyl-4-(3'-nitrophenyl)-5-hydroxymethyl-1,4-dihydropyridine-3-carboxylic acid methyl ester (4) in 91% yield. Compound 2 was reacted with triethyl phosphonoacetate to give 2,6-dimethyl-4-(3'-nitrophenyl)-5-(2-ethoxycarbonyl ethenyl)-1,4-dihydropyridine-3-carboxylic acid methyl ester (5) in 50% yield. Reaction between compound 2 and amines (methyl amine, ethylamine, methoxylamine, hydroxyl amine, phenyl hydrazine and 1-amino-4-methyl piperazine) gave six schiff bases 7a, 7b, 7c, 7e, 7f in 81%, 91%, 82%, 81%, 50% and 84% yield, respectively.

  • PDF

Virtual Screening of Tubercular Acetohydroxy Acid Synthase Inhibitors through Analysis of Structural Models

  • Le, Dung Tien;Lee, Hyun-Sook;Chung, Young-Je;Yoon, Moon-Young;Choi, Jung-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.947-952
    • /
    • 2007
  • Mycobacterium tuberculosis is a pathogen responsible for 2-3 million deaths every year worldwide. The emergence of drug-resistant and multidrug-resistant tuberculosis has increased the need to identify new antituberculosis targets. Acetohydroxy acid synthase, (AHAS, EC 2.2.1.6), an enzyme involved in branched-chain amino acid synthesis, has recently been identified as a potential anti-tuberculosis target. To assist in the search for new inhibitors and “receptor-based” design of effective inhibitors of tubercular AHAS (TbAHAS), we constructed four different structural models of TbAHAS and used one of the models as a target for virtual screening of potential inhibitors. The quality of each model was assessed stereochemically by PROCHECK and found to be reliable. Up to 89% of the amino acid residues in the structural models were located in the most favored regions of the Ramachandran plot, which indicates that the conformation of each residue in the models is good. In the models, residues at the herbicide-binding site were highly conserved across 39 AHAS sequences. The binding mode of TbAHAS with a sulfonylurea herbicide was characterized by 32 hydrophobic interactions, the majority of which were contributed by residue Trp516. The model based on the highest resolution X-ray structure of yeast AHAS was used as the target for virtual screening of a chemical database containing 8300 molecules with a heterocyclic ring. We developed a short list of molecules that were predicted to bind with high scores to TbAHAS in a conformation similar to that of sulfonylurea derivatives. Five sulfonylurea herbicides that were calculated to efficiently bind TbAHAS were experimentally verified and found to inhibit enzyme activity at micromolar concentrations. The data suggest that this time-saving and costeffective computational approach can be used to discover new TbAHAS inhibitors. The list of chemicals studied in this work is supplied to facilitate independent experimental verification of the computational approach.

Isolation of N-Iauroyl Tyrosine Antibiotic in E. coli Carrying N-acyl Amino Acid Synthase Gene from Environmental DNA in Korean Soils (한국 토양 환경유래의 N-acyl amino acid synthase 유전자에 의한 대장균 내 항생제 N-lauroyl tyrosine 생산)

  • Yeo, Yun-Soo;Lim, Yoon-Ho;Kim, Jeong-Bong;Yang, Jung-Mo;Lee, Chang-Muk;Kim, Soo-Jin;Park, Min-Seon;Koo, Bon-Sung;Yoon, Sang-Hong
    • Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.262-267
    • /
    • 2007
  • To access the natural product antibiotics produced by uncultured microorganisms, six cosmid libraries of DNA extracted directly from soil samples (environmental DNA, eDNA) were constructed and screened for the production of antibacterial active molecules. Of the approximately 60,000 clones screened, one antibacterial clone (YS92B) was detected. Ethyl acetate extracts of clone YS92B showed antibacterial activity against various pathogenic bacteria (Listeria monocytogenes, Bacillus subtilis, Pseudomonas syringae, Xanthomonas campestris pv. oryzae, Staphylococcus epidemis). Active constituents from cultures of YS92B were isolated and purified using a bioassay-guided fractionation against B. subtilis through a series of procedures (ethyl acetate extraction, Sephadex LH20 column chromatography, High Performance Liquid Chromatography). NMR (Nuclear Magnetic Resonance) spectral analysis of a major antibacterial active YS92B-VII indicated that it is a lauric acid linked to tyrosine. This report describes the characterization of antibacterially active long chain N-acyl derivatives of tyrosine that are produced by eDNA clones hosted in Escherichia coli from Korean soils.

Stereospecific Synthesis of the (2R,3S)- and (2R,3R)-3-Amino-2-hydroxy-4-phenylbutanoic Acids from D-Glucono-δ-lactone

  • Lee, Jin Hwan;Kim, Jin Hyo;Lee, Byong Won;Seo, Woo Duck;Yang, Min Suk;Park, Ki Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1211-1218
    • /
    • 2006
  • The enantiomerically pure (2R,3S)- and (2R,3R)-3-amino-2-hydroxy-4-phenylbutanoic acids (AHPBA) 1 and 3 are readily obtained from D-glucono-a-lactone. Both AHPBAs are the structural key units of KMI derivatives which are the potent inhibitors of BACE 1 ($\beta$-secretase) and HIV protease. Additionally, the obtained AHPBAs 1 and 3 are converted to dipeptides of bestatin stereoisomers 2 and 4.