• Title/Summary/Keyword: ambient vibration response

Search Result 71, Processing Time 0.032 seconds

Investigation of mode identifiability of a cable-stayed bridge: comparison from ambient vibration responses and from typhoon-induced dynamic responses

  • Ni, Y.Q.;Wang, Y.W.;Xia, Y.X.
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.447-468
    • /
    • 2015
  • Modal identification of civil engineering structures based on ambient vibration measurement has been widely investigated in the past decades, and a variety of output-only operational modal identification methods have been proposed. However, vibration modes, even fundamental low-order modes, are not always identifiable for large-scale structures under ambient vibration excitation. The identifiability of vibration modes, deficiency in modal identification, and criteria to evaluate robustness of the identified modes when applying output-only modal identification techniques to ambient vibration responses were scarcely studied. In this study, the mode identifiability of the cable-stayed Ting Kau Bridge using ambient vibration measurements and the influence of the excitation intensity on the deficiency and robustness in modal identification are investigated with long-term monitoring data of acceleration responses acquired from the bridge under different excitation conditions. It is observed that a few low-order modes, including the second global mode, are not identifiable by common output-only modal identification algorithms under normal ambient excitations due to traffic and monsoon. The deficient modes can be activated and identified only when the excitation intensity attains a certain level (e.g., during strong typhoons). The reason why a few low-order modes fail to be reliably identified under weak ambient vibration excitations and the relation between the mode identifiability and the excitation intensity are addressed through comparing the frequency-domain responses under normal ambient vibration excitations and under typhoon excitations and analyzing the wind speeds corresponding to different response data samples used in modal identification. The threshold value of wind speed (generalized excitation intensity) that makes the deficient modes identifiable is determined.

Identification of Stiffness Parameters of Nanjing TV Tower Using Ambient Vibration Records (상시진동 계측자료를 이용한 Nanjing TV탑의 강성계수 추정)

  • Kim Jae Min;Feng. M. Q.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.291-300
    • /
    • 1998
  • This paper demonstrates how ambient vibration measurements at a limited number of locations can be effectively utilized to estimate parameters of a finite element model of a large-scale structural system involving a large number of elements. System identification using ambient vibration measurements presents a challenge requiring the use of special identification techniques, which ran deal with very small magnitudes of ambient vibration contaminated by noise without the knowledge of input farces. In the present study, the modal parameters such as natural frequencies, damping ratios, and mode shapes of the structural system were estimated by means of appropriate system identification techniques including the random decrement method. Moreover, estimation of parameters such as the stiffness matrix of the finite element model from the system response measured by a limited number of sensors is another challenge. In this study, the system stiffness matrix was estimated by using the quadratic optimization involving the computed and measured modal strain energy of the system, with the aid of a sensitivity relationship between each element stiffness and the modal parameters established by the second order inverse modal perturbation theory. The finite element models thus identified represent the actual structural system very well, as their calculated dynamic characteristics satisfactorily matched the observed ones from the ambient vibration test performed on a large-scale structural system subjected primarily to ambient wind excitations. The dynamic models identified by this study will be used for design of an active mass damper system to be installed on this structure fer suppressing its wind vibration.

  • PDF

Modal analysis and ambient vibration measurements on Mila-Algeria cable stayed bridge

  • Kibboua, Abderrahmane;Farsi, Mohamed Naboussi;Chatelain, Jean-Luc;Guillier, Bertrand;Bechtoula, Hakim;Mehani, Youcef
    • Structural Engineering and Mechanics
    • /
    • v.29 no.2
    • /
    • pp.171-186
    • /
    • 2008
  • The seismic response analysis of an existing bridge needs a mathematical model that can be calibrated with measured dynamic characteristics. These characteristics are the periods and the associated mode shapes of vibration and the modal damping coefficients. This paper deals with the measurements and the interpretation of the results of ambient vibration tests done on a newly erected cable stayed bridge across the Oued Dib River at Mila city in Algeria. The signal analysis of ambient vibration records will permit to determine the dynamic characteristics of the bridge. On the other hand, a 3-D model of the bridge is developed in order to assess the frequencies and the associated modes of vibration. This information will be necessary in the planning of the test on the site (locations of the sensors, frequencies to be measured and the associated mode shapes of vibration). The frequencies predicted by the finite element model are compared with those measured during full-scale ambient vibration measurements of the bridge. In the same way, the modal damping coefficients obtained by the random decrement method are compared to those of similar bridges.

The Analysis in Measurement Performance MEMS Sensor Through the Low-Noise Vibration Measurement APP (저노이즈형 진동계측 앱을 통한 MEMS 센서의 계측성능분석)

  • Jung, Young-Seok;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.1
    • /
    • pp.93-100
    • /
    • 2017
  • With increasing number construction of high-rise building which has about 40 to 60 floors there have been many kinds of problem which related with usage from vibration. To predict response acceleration, it is important to assess correct natural frequency. However, due to the noise of MEMS sensor, it is difficult to measure dynamic characteristic such as natural frequency when measuring ambient vibration using MEMS sensor within cell phone. Therefore, a comparative analysis on vibration measuring applications was performed after measuring ambient vibration of 2 skyscrappers which have height between 133.5~244.3m that are located in Seoul and Observation tower using I-jishin APP with noise reduction function of MEMS sensor in order to verify the effectiveness of low noise type vibration measurement APP.

Construction stage effect on the dynamic characteristics of RC frame using operational modal analysis

  • Arslan, Mehmet Emin;Durmus, Ahmet
    • Computers and Concrete
    • /
    • v.12 no.1
    • /
    • pp.79-90
    • /
    • 2013
  • In this study, dynamic characteristics such as natural frequencies, mode shapes and damping ratios of RC frame is determined for different construction stages using Operational Modal Analyses method under ambient vibration. Full scaled, one bay and one story RC frames are selected as an application for different construction stages such as plane, brick in-filled and brick in-filled with plaster. The RC frame is vibrated by natural excitations with small impact effects and the response signals are measured using sensitive accelerometers during ambient vibration tests. Measurement time-frequency span and effective mode number are determined by considering similar studies in literature. Sensitive seismic accelerometers are used to collect signals obtained from the experimental tests. To obtain experimental dynamic characteristics, output-only system identification technique is employed namely; Enhanced Frequency Domain Decomposition technique in the frequency domain. It is demonstrated that the ambient vibration measurements are enough to identify the most significant modes of RC frames.

Designs and Tests for the Vibration Control of Full-Scale Steel Frame Structure with Added Viscoelastic Dampers (실 구조물 진동제어를 위한 점탄성 댐퍼 설계 및 적용 실험)

  • Jeoung, Jeoung-Kyo;Kim, Doo-Hoon;Kim, Young-Chan;Park, Jin-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.687-692
    • /
    • 2002
  • In order to verify the effectiveness of adding visooelastic dampers to full-scale steel frame structure on the reduction of their seismic and wind response a experimental work was carried out. First, The test was conducted on the VE dampers subjected to sinusoidal excitations under a variety of ambient temperatures, frequency, and the damper strain. Results from these tests showed that the viscoelastic dampers have high energy dissipation capacity. Second, The vibration tests was conducted of the full-scale steel frame structure with md without added VE dampers at different temperatures. Viscoelastically damped full-scale structure test result on the effect of ambient temperature show that viscoelastic dampers are very effective in reducing excessive vibration of the structure due to sinusoidal excitation over a wide ringe of ambient temperature.

  • PDF

Effect of excitation type on dynamic system parameters of a reinforced concrete bridge

  • Wahab, M.M. Abdel;De Roeck, G.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.4
    • /
    • pp.387-400
    • /
    • 1999
  • Damage detection in civil engineering structures using the change in dynamic system parameters has gained a lot of scientific interest during the last decade. By repeating a dynamic test on a structure after a certain time of use, the change in modal parameters can be used to quantify and qualify damages. To be able to use the modal parameters confidentially for damage evaluation, the effect of other parameters such as excitation type, ambient conditions,... should be considered. In this paper, the influence of excitation type on the dynamic system parameters of a highway prestressed concrete bridge is investigated. The bridge, B13, lies between the villages Vilvoorde and Melsbroek and crosses the highway E19 between Brussels and Antwerpen in Belgium. A drop weight and ambient vibration are used to excite the bridge and the response at selected points is recorded. A finite element model is constructed to support and verify the dynamic measurements. It is found that the difference between the natural frequencies measured using impact weight and ambient vibration is in general less than 1%.

Estimation of Damping Properties of Bridge Structures under Ambient Vibration Condition (상시진동신호를 이용한 교량의 감쇠특성 추정)

  • Kim, Sung-Wan;Park, Dong-Uk;Kim, Nam-Sik
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.93-100
    • /
    • 2008
  • Recently, due to the advanced measurement techniques, long-term health monitoring systems have been frequently applied to existing bridges. It is known that damping ratios as one of dynamic properties would be an important parameter for evaluating the bridge condition. However, damping ratios may be normally varied depending on the external loading effects on bridges. In general, both the logarithmic decrement and the half-power band width method as a conventional method can be simply used for evaluating the damping ratios accurately when bridge response signals are measured under free vibration conditions. In this study, the Hilbert-Huang transform and the extended Kalman filter were applied to evaluate the damping ratio by using the bridge acceleration signals measured under ambient vibration condition. From the results under ambient vibration condition of bridges, it was examined that the damping ratios evaluated from both the Hilbert-Huang transform and the extended Kalman filter could be more reliable than those from conventional methods.

  • PDF

Analytical and experimental modal analyses of a highway bridge model

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Sevim, Baris
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.803-818
    • /
    • 2013
  • In this study, analytical and experimental modal analyses of a scaled bridge model are carried out to extract the dynamic characteristics such as natural frequency, mode shapes and damping ratios. For this purpose, a scaled bridge model is constructed in laboratory conditions. Three dimensional finite element model of the bridge is constituted and dynamic characteristics are determined, analytically. To identify the dynamic characteristics experimentally; Experimental Modal Analyses (ambient and forced vibration tests) are conducted to the bridge model. In the ambient vibration tests, natural excitations are provided and the response of the bridge model is measured. Sensitivity accelerometers are placed to collect signals from the measurements. The signals collected from the tests are processed by Operational Modal Analysis; and the dynamic characteristics of the bridge model are estimated using Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods. In the forced vibration tests, excitation of the bridge model is induced by an impact hammer and the frequency response functions are obtained. From the finite element analyses, a total of 8 natural frequencies are attained between 28.33 and 313.5 Hz. Considering the first eight mode shapes, these modes can be classified into longitudinal, transverse and vertical modes. It is seen that the dynamic characteristics obtained from the ambient and forced vibration tests are close to each other. It can be stated that the both of Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods are very useful to identify the dynamic characteristics of the bridge model. The first eight natural frequencies are obtained from experimental measurements between 25.00-299.5 Hz. In addition, the dynamic characteristics obtained from the finite element analyses have a good correlation with experimental frequencies and mode shapes. The MAC values obtained between 90-100% and 80-100% using experimental results and experimental-analytical results, respectively.

Investigation of water length effects on the modal behavior of a prototype arch dam using operational and analytical modal analyses

  • Sevim, Baris;Bayraktar, Alemdar;Altunisik, Ahmet Can
    • Structural Engineering and Mechanics
    • /
    • v.37 no.6
    • /
    • pp.593-615
    • /
    • 2011
  • This study determines the water length effects on the modal behavior of a prototype arch dam using Operational and Analytical Modal Analyses. Achievement of this purpose involves construction of a prototype arch dam-reservoir-foundation model under laboratory conditions. In the model, reservoir length was taken to be as much as three times the dam height. To determine the experimental dynamic characteristics of the arch dam using Operational Modal Analysis, ambient vibration tests were implemented for empty reservoir and three different reservoir water lengths. In the ambient vibration tests, the dam was vibrated by natural excitations provided from small impact effects and the response signals were measured using sensitive accelerometers. Operational Modal Analysis software process signals collected from the ambient vibration tests, and Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification techniques estimated modal parameters of the dams. To validate the experimental results, 3D finite element model of the prototype arch dam was modeled by ANSYS software for empty reservoir and three different reservoir water lengths, and dynamic characteristics of each model were determined analytically. At the end of the study, experimentally and analytically identified dynamic characteristics compared to each other. Also, changes on the natural frequencies along to water length are plotted as graphs. Results suggest that reservoir water complicates the modal behavior of the arch dam significantly.