• Title/Summary/Keyword: ambient air pollution

Search Result 318, Processing Time 0.028 seconds

Development of Primary Standard Gas Mixtures of Fourteen Volatile Organic Compounds in Hazardous Air Pollutants for Accurate Ambient Measurements in Korea (at 1 μmol/mol Levels) (유해대기오염물질 중 14종의 휘발성유기화합물 1차 표준가스개발 (1 μmol/mol 수준))

  • Kang, Ji Hwan;Kim, Young Doo;Kim, Mi Eon;Lee, Jinhong;Lee, Sangil
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.2
    • /
    • pp.331-341
    • /
    • 2018
  • Hazardous air pollutants(HAPs) in the atmosphere are regulated as major air pollutants in Korea by the Air Pollution Control Act. In order to manage and control HAPs, accurate standards, which are traceable to the International System of Units(SI), are required. In this study, primary standard gas mixtures(PSMs) of volatile organic compounds(VOCs) which are specified as HAPs were developed at $1{\mu}mol/mol$ levels. The selected fourteen VOCs include Benzene, Toluene, Ethylbenzene, m-Xylene, Styrene, o-Xylene, Chloroform, 1,1,2-Trichloroethane, Trichloroethylene, Tetrachloroethylene, 1,1-Dichloroethane, Carbon tetrachloride, 1,3-Butadiene, and Dichloromethane. The HAPs PSMs were gravimetrically prepared in aluminum cylinders and their consistency was verified within the relative expanded uncertainty of 0.71% (k=2). Potential adsorption loss onto the internal surface of cylinders was estimated by cylinder-to-cylinder division method. No adsorption loss was observed within the uncerainty of 0.53%. The long-term stability of the HAPs PSMs was evaluated comparing with freshly prepared HAPs PSMs. The HAPs PSMs were stable for one year within the uncertainty of 0.38%. The final uncertainty of the PSMs was determined by combining the preparation uncertainty, verification uncertainty, and stability uncertainty. Finally, traceable and stable HAPs PSMs at $1{\mu}mol/mol$ levels were developed with the uncertainty of less than 0.76% in high-pressure aluminum cylinders.

A statistical prediction for concentrations of Manganese in the ambient air (통계적 모형을 이용한 대기중 망간 농도 예측)

  • Kwon, Hye Ji;Kim, Yongku
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.577-586
    • /
    • 2016
  • Hazardous air pollution caused by heavy metals in the air is at a serious level. Although manganese(Mn), one of the heavy metals, is a non-carcinogenic substance, it has a harmful influence on the human body. It is partially measured because automatic monitoring technologies have not yet be fully established. We introduced a statistical model for the daily concentration of manganese. Incorporating a linkage between Mn and meteorology, the proposed model is formulated in way to identify meteorological effects and to allow for seasonal trends, enabling not only accurate measurement of manganese concentration, but also information about the evaluation on a Hazard Quotient (non-cancer risk).

Effects of Ambient Particulate Matter($PM_{10}$) on Peak Expiratory Flow and Respiratory Symptoms in Subjects with Bronchial Asthma During Yellow Sand Period (황사기간 중 천식 환자에서 대기 중 미세먼지($PM_{10}$)가 최대호기 유속과 호흡기 증상에 미치는 영향)

  • Park, Jeong Woong;Lim, Young Hee;Kyung, Ssun Young;An, Chang Hyeok;Lee, Sang Pyo;Jeong, Seong Hwan;Ju, Young-Su
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.6
    • /
    • pp.570-578
    • /
    • 2003
  • Background : Ambient particles during Asian dust events are usually sized less than $10{\mu}m$, known to be associated with the adverse effects on the general populations. But, there has been no considerable evidence linking these particles to the adverse effects on airways. The objectives of this study was to investigate the possible adverse effects of Asian dust events on respiratory function and symptoms in subjects with bronchial asthma. Patients and Methods : From march to June 2002, Asthmatic patients who were diagnosed with bronchial challenge test or bronchodilator response were enrolled. We divided them into three groups; mild, moderate, and severe, according to the severity. Subjects with other organ insufficiency such as heart, kidney, liver, and malignancy were excluded. All patients completed twice daily diaries and recorded peak flow rate, respiratory symptom, and daily activity. Daily and hourly mean pollutant levels of particulate matter < $10{\mu}m$ in diameter($PM_{10}$), nitrogen dioxide($NO_2$), sulphur dioxide($SO_2$), ozone($O_3$) and carbon monoxide(CO) were measured at the 10 different monitoring sites. Results : Dust events occured 14 times during the study period. Daily averages of 4 air pollutant were measured with an increased level of $PM_{10}$, decreased level of $NO_2$ and $SO_2$, and no change in CO during dust days compared to those during control days. An increase in $PM_{10}$ concentration was associated with an increase of subjects with PEF variability of >20% (p<0.05), night time symptom(p<0.05), and a decrease in mean PEF (p<0.05), which were calculated by the longitudinal data analysis. Otherwise, there was no association between $PM_{10}$ level and bronchodialtor inhaler, and daytime respiratory symptoms. Conclusion : This study shows evidence that ambient air pollution, especially $PM_{10}$, during Asian dust events, could be one of the many aggravating factors at least in patients with airway diseases. This data can be used as a primary source to set up a new policy on air environmental control and to evaluate the safety of air pollution index. We also expect that this research will help identify precise components of dust, which are more linked to the adverse effects.

Effects of Air Pollition on Rice Plant Growth (大氣汚染이 水稻生育에 미치는 影響)

  • 신응배;박완철;허기호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.1
    • /
    • pp.11-21
    • /
    • 1986
  • The study was performed to investigate the effects of gaseous imission of sulfur dioxide and hydrogen fluoride on the growth of rice plant under stressed field conditions. The plants were cultivated in normal paddy fields where are 88 industrial plants operating with 285 smoke stacks emitting pollutants. There has been a number of reported studies (1, 3, 11, 19, 20) which deal with rice plant damages by air pollution under a simulated exposure experimental condition. Furthermore, these experiments were conducted to examine effects of a single pollutant on the plant. Furthermore, these experiments were conducted to examine effects of a single pollutant on the plant. In korea, however, there is no study reported in literature with respect to the in-situ dose-response relationship between rice pant reduction in yields and air pollution. This study is specifically dealt with multiple effects of sulfur dioxde and hydrogen fluoride on various plant growth indicators such as leaf damage, culm height, weight of grain, panicles per hill, spikelets per panicle and percent fertility.It appears that there is a good correlation between ambient concentrations of sulfur oxides and sulfur contents found in leaves with an average correlation coefficient of 0.868 within a 1% significance level. It is interesting to note that a better multiple correlation was found between percent leaf damage and sulfur and fluoride contentd found in leaf with a significance of 1% level. The yearly correlation coefficient ranges from 0.963 to 0.987 with an average being 0.971. It is, therefore, believed that a percent leaf damage may serve as a single indicator of pollutional damages to rice plant cultivating in fields. Regarding other factors to the diminution of rice plant growth in polluted atmosphere, it appears that a significant correlation to culm length and dry weight of grain with a 1% significance level whereas T/R ratio has a good correlation with lead damage within 5% significance level. An evaluation of data observed has demonstrated that both panicles per hill and percent fertility are significantly affected by air pollutants. As expected, hydrogen fluoride has more effects than sulfur oxide. It is, however, interesting to note that spikelets per panicles has slightly been affected while no indication of effects on 1000-grain-weight has been observed. This may lead to a conclusion that a reduction in yield of rice under polluted field conditions may have more been caused by the diminution of panicles per hill and percent fertility rather than by the diminution of spikelets per panicle and grain weight.

  • PDF

Source Identification of Ambient Size-by-Size Particulate Using the Positive Matrix Factorization Model on the Border of Yongin and Suwon (PMF 모델을 이용한 용인-수원경계지역에서의 부유분진의 크기별 오염원 확인)

  • Oh, Mi-Seok;Lee, Tae-Jung;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.2
    • /
    • pp.108-121
    • /
    • 2009
  • The suspended particulate matters have been collected on membrane filters and glass fiber filters by an 8-stage cascade impactor for 2 years (Sep. 2005${\sim}$Sep. 2007) in Kyung Hee University-Global Campus located on the border of Yongin and Suwon. The 20 chemical species (Al, Mn, Si, Fe, Cu, Pb, Cr, Ni, V, Cd, Ba, $Na^+$, ${NH_4}^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$, ${NO_3}^-$, and ${SO_4}^{2-}$) were analyzed by an ICP-AES and an IC after performing proper pre-treatments of each sample filter. Based on these chemical information, the PMF receptor model was applied to identify the source of ambient size-by-size particulate matters. The receptor modeling is the one of the statistical methods to achieve resonable air pollution management strategies. A total of 10 sources was identified in 9 size-ranges such as long-range transport, secondary aerosol, $NH_{4}NO_{3}$ related source, coal combustion, sea-salt, soil, oil combustion, auto emission, incineration, and biomass burning. Especially, the secondary aerosol source assorted in fine and coarse modes was intensively studied.

Research Trends in Agenda-setting for Climate Change Adaptation Policy in the Public Health Sector in Korea

  • Chae, Su-Mi;Kim, Daeeun
    • Journal of Preventive Medicine and Public Health
    • /
    • v.53 no.1
    • /
    • pp.3-14
    • /
    • 2020
  • Many studies have been conducted to assess the health effects of climate change in Korea. However, there has been a lack of consideration regarding how the results of these studies can be applied to relevant policies. The current study aims to examine research trends at the agenda-setting stage and to review future ways in which health-related adaptation to climate change can be addressed within national public health policy. A systematic review of previous studies of the health effects of climate change in Korea was conducted. Many studies have evaluated the effect of ambient temperature on health. A large number of studies have examined the effects on deaths and cardio-cerebrovascular diseases, but a limitation of these studies is that it is difficult to apply their findings to climate change adaptation policy in the health sector. Many infectious disease studies were also identified, but these mainly focused on malaria. Regarding climate change-related factors other than ambient temperature, studies of the health effects of these factors (with the exception of air pollution) are limited. In Korea, it can be concluded that studies conducted as part of the agenda-setting stage are insufficient, both because studies on the health effects of climate change have not ventured beyond defining the problem and because health adaptation to climate change has not been set as an important agenda item. In the future, the sharing and development of relevant databases is necessary. In addition, the priority of agenda items should be determined as part of a government initiative.

Atmospheric Total Gaseous Mercury (TGM) Concentration and Characteristics in Seoul, Korea (서울시 대기 중 총 가스상 수은의 농도 및 특성 분석)

  • Lee, Yong-Mi;Heo, Jong-Bae;Yi, Seung-Muk
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.1
    • /
    • pp.42-48
    • /
    • 2008
  • The objectives of this study were to measure ambient TGM concentrations in Seoul Korea, to determine the temporal variation of TGM, and to analyze the relationships among TGM, meteorological data and PM2.5 measured at the same time. Ambient TGM and PM2.5 concentrations were measured at the roof of the Graduate School of Public Health building in Seoul, Korea for the period of January to October 2004. Average TGM concentration was $3.43{\pm}1.17ng/m^3$. The average TGM was at a low concentration similar to those of background sites in other countries. The temporal variations and meteorological phenomena of TGM were not statistically significant. There was a positive link between TGM and PM2.5. It didn't indicate that reduction of $Hg^{2+}$ to Hg0 had occurred in liquid water contained in smog as in a previous study, but it shows that PM2.5 and TGM could be emitted from the same sources such as power plants and combustion engines. Also, the strong correlation between TGM and $SO_2$ concentrations indicated that the source of TGM was from fossil fuel combustions including coal combustion. Specifically, $SO_2\;and\;SO_4{^2-}$ concentrations correlated to TGM concentrations could be linked to TGM emitted from local and regional sources as well.

Impact of the Smoke Aerosol from Russian Forest Fires on the Atmospheric Environment over Korea during May 2003 (2003년 5월 러시아지역에서 발생한 산불로 인한 스모크 에어로졸 플룸의 영향)

  • Lee, Kwon-Ho;Kim, Jeong-Eun;Kim, Young-Joon;Kim, Joon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.5
    • /
    • pp.603-613
    • /
    • 2004
  • Extensive forest fires occurred across the border in Russia. particularly east of Lake Baikal between the Amur and Lena rivers in May 2003. These forest fires released large amounts of particulates and gases into the atmosphere. resulting in adverse effects on regional air quality and the global radiation budget. Smoke pollution from the Russian fires near Lake Baikal was sometimes transported to Korea through Mongolia and eastern China. In this study ground based radiation (visible and UV-B) data measured during May 2003 at Seoul and Kwangju were analyzed to estimate smoke aerosol impacts on solar radiation. Surface criteria air pollutants ($PM_{10}$, CO, $O_3$) data were also obtained from National Institute of Environmental Research (NIER) during smoke aerosol event period (19 May~24 May 2003). Large Aerosol Optical Depth (AOD) 1.0~3.0 was observed during this period due to the influence of the long range transport of smoke aerosol plume from the Russian fires, resulting in short-wavelength direct aerosol radiative forcing of -90~ -200W/$m^2$. These smoke aerosol plume caused decrease in surface UV-B radiation up to 80% and increase in PM_(10) concentration up to 200${\mu}g/m^3$ exceeding the 24 hour ambient air quality standard.

Development of Vehicle Emission Model with a High Resolution in Time and Space (${\cdot}$공간적 고해상도 자동차 배출량 모형의 개발)

  • Park, Seong-Kyu;Kim, Shin-Do;Park, Ki-Hark
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.3
    • /
    • pp.293-299
    • /
    • 2004
  • Traffic represents one of the largest sources of primary air pollutants in urban area. As a consequence, numerous abatement strategies are being pursued to decrease the ambient concentration of pollutants. A characteristics of most of the these strategies is a requirement for accurate data on both the quantity and spatial distribution of emissions to air in the form of an atmospheric emission inventory database. In the case of traffic pollution, such an inventory must be compiled using activity statistics and emission factors for vehicle types. The majority of inventories are compiled using passive data from either surveys or transportation models and by their very nature tend to be out-of-date by the time they are compiled. The study of current trends is towards integrating urban traffic control systems and assessments of the environmental effects of motor vehicles. In this study, a model of vehicle emission calculation by using real-time traffic data was studied. Traffic data, which are required on a street-by-street basis, is obtained from induction loops of traffic control system. It is possible that characteristics of hourly air pollutants emission rates is obtained from hourly traffic volume and speed. An emission rates model is allocated with a high resolution space by using geographic information system (GIS). Vehicle emission model was developed with a high resolution spatial, gridded and hourly emission rates.

Effects of Reduced Ambient PM10 Levels on the Health of Children in Lower-income Families (대기질 개선과 저소득계층 어린이 건강보호 효과)

  • Bae, Hyun-Joo
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.3
    • /
    • pp.182-190
    • /
    • 2010
  • We examined the association of particulate matter with an aerodynamic diameter < $10\;{\mu}m$ ($PM_{10}$) with asthma-related hospitalization, stratified by socioeconomic status (SES), among children less than 15 years of age in Seoul, Korea, between 2003 and 2005. In addition, we estimated the reduction in the number of asthma-related hospitalizations that would result from implementing the World Health Organization (WHO) guideline. SES was defined based on data concerning health insurance premium grades, and grouped into two levels: lower-income group and control group. The lower-income group was classified as having an accumulated income which did not exceed the 50th percentile of the median income. Time-series analysis was performed to evaluate the association between $PM_{10}$ and asthma-related hospitalization. The Environmental Benefits Mapping and Analysis Program was used to analyze the impact on children's health. Based upon an increase of $10\;{\mu}g/m^3$ of $PM_{10}$, the asthma-related hospitalization risk for the lower-income group was increased by 1.78% (95% confidence intervals (CI) = 0.79-2.78%), while the risk for the control group was increased by 0.83% (95% CI = 0.34-1.32%). Attaining the WHO guideline, relative to the concentration in 2007, would result in a reduction in asthma-related hospitalizations of 18 cases per 100,000 of the children population in the lower-income group, and 7 cases in the control group. The health benefits of improved air quality for children in the lower-income group were thus 2.5 times greater than for children in the control group. Our results show that the lower-income group is disproportionately burdened with asthma-related hospitalization arising from air pollution. Therefore, biologically- and socioeconomically-disadvantaged populations should be considered in public health interventions in order to protect the children's health.