• Title/Summary/Keyword: alzheimer's disease

Search Result 1,115, Processing Time 0.023 seconds

The Effects of Gagbungyunsoo-tanghap Zeungsonbakchul-san (GYZB) Hot Water Extract & Ultra-fine Powder on the Alzheimer's Disease Model (각병연수장합증손백출산(却病延壽場合增損白朮散) 열수추출물, 초미세분말제형이 Alzheimer's Disease 병태(病態) 모델에 미치는 영향)

  • Choi, Bo-Yoon;Lee, Sang-Ryong;Jung, In-Chul
    • The Journal of Korean Medicine
    • /
    • v.28 no.2 s.70
    • /
    • pp.137-154
    • /
    • 2007
  • Objective : This experiment was designed to investigate the effect of the GYZB hot water extract & ultra-fine powder on the Alzheimer's disease model induced by amyloid ${\beta}$ protein (${\beta}A$). Method : We measured the effects of the GYZB hot water extract on expression of $IL-1{\beta}$, IL-6 mRNA and production of IL-6, $TNF-{\alpha}$ in the BV2 microglial cell line treated with lipopolysaccharide (LPS). The effects of the GYZB hot water extract & ultra-fine powder on (1) the behavior, (2) expression of $IL-1{\beta}$ and $TNF-{\alpha}$, (3) glucose in serum, (4) the infarction area of the hippocampus, and brain tissue injury in mice induced with Alzheimer's diseased by ${\beta}A$ were investigated. Results : The GYZB hot water extract suppressed the expression of $IL-1{\beta}$ and IL-6 mRNA and significantly suppressed the production of IL-6 and $TNF-{\alpha}$ in the BV2 microglial cell line treated with LPS. The GYZB hot water extract & ultra-fine powder showed a significant inhibitory effect on the memory deficit of the mice with Alzheimer's disease induced by ${\beta}A$ in the Morris water maze experiment, which measured stop-through latency and distance movement-through latency. The GYZB ultra-fine powder significantly suppressed the expression of $IL-1{\beta}$ and $TNF-{\alpha}$ protein, and the GYZB hot water extract significantly suppressed the expression of $TNF-{\alpha}$ protein in the microglial cell of mice with Alzheimer's disease induced by ${\beta}A$. The GYZB hot water extract & ultra-fine powder reduced the infarction area of hippocampus in the mice with Alzheimer's disease induced by ${\beta}A$. Conclusions : These results suggest that GYZB hot water extract & ultra-fine powder may be effective for the prevention and treatment of Alzheimer's disease. Investigation into the clinical use of GYZB for Alzheimer's disease is suggested for future research.

  • PDF

The Effects of NogYongDaeBoTang,(NYDBT)on the Alzheimer's Disease Model Induced by CT-105 and $A{\beta}$ (녹용대보탕이 ${\beta}-Amyloid$로 유도(誘導)된 Alzheimer's Disease 병태(病態) 모델에 미치는 영향(影響))

  • Seo, Gyoo-Tae;Lee, Eun-Kyung;Choi, Cheol-Hong;Chung, Dae-Kyoo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.18 no.2
    • /
    • pp.101-132
    • /
    • 2007
  • Objective : This research investigates the effect of the NogYongDaeBoTang,(NYDBT) on Alzheimer's disease. Method : The effects of the NYDBT extract on (1) $IL-1{\beta}$, IL-6, and $TNF-{\alpha}$ mRNA of PC-12 cells treated with LPS; (2) acetylcholinesterase(AChE), amyloid precursor proteins(APP), and glial fibrillary acidic protein(GFAP) mRNA the AChE activity and the APP production of PC-12 cell treated with CT-105; (3) the behavior; (4) expression of $IL-1{\beta}$, $TNF-{\alpha}$, MDA, $IL-1{\beta}$ mRNA, and $TNF-{\alpha}$ mRNA; (5) the infarction area of the hippocampus, and brain tissue injury in Alzheimer‘s diseased mice induced with ${\beta}A$ were investigated. Results : 1. The NYDBT extract suppressed the expression of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ mRNA in BV2 microglia cell line treated with LPS. 2. The NYDBT extract suppressed the expression of $IL-1{\beta}$, IL-6, and $TNF-{\alpha}$ protein production in BV2 microglia cell line treated with LPS. 3. For the NYDBT extract group a significant inhibitory effect on the memory deficit was shown for the mice with Alzheimer's disease induced by $A{\beta}$ in the Morris water maze experiment, which measured stop-through latency, and distance movement-through latency. 4. The NYDBT extract suppressed the over-expression of $IL-1{\beta}$ protein, $TNF-{\alpha}$ protein, MDA, and CD68/CD11b, in the mice with Alzheimer's disease induced by $A{\beta}$. 5. The NYDBT extract reduced the infarction area of hippocampus, and controlled the injury of brain tissue in the mice with Alzheimer's disease induced by $A{\beta}$. 6. The NYDBT extract reduced the Tau protein, GFAP protein, and presenilin1/2 protein (immunohistochemistry) of hippocampus in the mice with Alzheimer's disease induced by $A{\beta}$. Conclusions : These results suggest that the NYDBT extract may be effective for the prevention and treatment of Alzheimer's disease.

  • PDF

The Effects of Chaenomelis fructus,(CMF) Extract on the Alzheimer's Disease Model Induced by CT-105 and ${\beta}A$ (목과(木瓜)가 CT105 와 ${\beta}A$로 유도(誘導)된 Alzheimer's Disease병태(病態) 모델에 미치는 영향(影響))

  • Kim, Myung-Jin;Jung, In-Chul;Lee, Sang-Ryong
    • Journal of Oriental Neuropsychiatry
    • /
    • v.16 no.1
    • /
    • pp.97-117
    • /
    • 2005
  • This research investigates the effect of the Chaenomelis fructus(CMF) on Alzheimer's disease. Specifically, the effects of the CMF extract on (1) >$IL-1{\beta}$, IL-6, and $TNF-{\alpha}$ mRNA of PC-12 cells treated with LPS; (2) amyloid precursor proteins(APP), acetylcholinesterase(AChE), and glial fibrillary acidic protein(GFAP) mRNA of PC-12 cells treated with CT-105; (3) the AChE activity and the APP production of PC-12 cell treated with CT-105; (4) the behavior of AD mice with ${\beta}A$; (5) expression of $IL-1{\beta}$, $TNF-{\alpha}$, MDA, $IL-1{\beta}$ mRNA, $TNF-{\alpha}$ mRNA, and ROS; (6) the infarction area of the hippocampus, and brain tissue injury in Alzheimer's diseased mice induced with ${\beta}A$ were investigated. The results were summarized as follows; 1. The CMF extract suppressed the expression of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ mRNA in THP-1 cells treated with LPS. 2. The CMF extract suppressed the expression of APP, AChE, and GFAP mRNA in PC-12 cells treated with CT-105. 3. The CMF extract suppressed the AChE activity, and the production of APP significantly in PC-12 cells treated with CT-105. 4. A significant inhibitory effect on the memory deficit was shown on the CMF extract group of the mice with Alzheimer's disease induced by ${\beta}A$ in the Morris water maze experiment, which measured stop-through latency, and distance movement-through latency. 5. The CMF extract suppressed the over-expression of $IL-1{\beta}$ protein, $TNF-{\alpha}$ protein, MDA, $IL-1{\beta}$ protein, mRNA, $TNF-{\alpha}$ mRNA, CD68/GFAP, and ROS in the mice with Alzheimer's disease induced by ${\beta}A$. 6. The CMF extract reduced the infarction area of hippocampus, and controlled the injury of brain tissue in the mice with Alzheimer’s disease induced by ${\beta}A$. These results suggest that the CMF extract may be effective for the treatment of Alzheimer’s disease. Investigation into the clinical use of the CMF extract for Alzheimer's disease is suggested for future research.

  • PDF

Usefulness of 18F-Florbetaben in Alzheimer's Disease Diagnosis (알츠하이머병 진단에서 18F-Florbetaben의 유용성)

  • Lee, Hyo-Yeong;Im, In-Chul;Song, Min-jae;Shin, Seong-gyu
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.5
    • /
    • pp.307-312
    • /
    • 2016
  • Alzheimer's disease is the most common degenerative brain diseases that causes dementia. ${\beta}$-amyloid neuritic plaque density that accumulates in the brain is difficult to perform daily living, such as memory loss, language ability deterioration. It is used to estimate ${\beta}$-amyloid neuritic plaque density in adult patients with cognitive impairment who are being evaluated for Alzheimer's disease and other causes of cognitive impairment. Using the $^{18}F$-Florbetaben with high sensitivity and specificity for the ${\beta}$-amyloid neuritic plaque density to evaluate the usefulness for the early diagnosis of Alzheimer's disease. In $^{18}F$-FDG Brain imaging shows no specific findings. And it appeared on the MR-Brain imaging without atrophy of the hippocampus. However, the intake of ${\beta}$-amyloid neuritic plaque density in $^{18}F$-Florbetaben informs that it is the progress of Alzheimer's disease. Therefore, $^{18}F$-Florobetaben is very useful for early diagnosis of Alzheimer's disease.

Therapeutic Effect of the Mixed Extract of Panax ginseng C.A. Mey. and Chaenomeles sinensis Koehne on the Injury of Brain Tissue in the Mice by Alzheimer's Disease (Alzheimer성 치매 유발 생쥐의 뇌조직 손상에 대한 인삼, 목과 혼합추출액의 치료 효과)

  • Han, Sin-Hee;Doh, Eun-Soo
    • Korean Journal of Plant Resources
    • /
    • v.20 no.4
    • /
    • pp.325-330
    • /
    • 2007
  • This study was conducted to investigate the effect of the mixed extract of P. ginseng C.A. Mey. and C. sinensis K. (Gin-CHF) on the infarction area of hippocampus in the mice with Alzheimer's disease induced by ${\beta}-amyloid({\beta}A)$. The Gin-CHF extract reduced the infarction area of hippocampus, and controlled the injury of brain tissue in the mice with Alzheimer's disease induced by ${\beta}A$. The Gin-CHF extract reduced the Tau protein, GFAP protein, and presenilin1/presenilin2 protein (immunohistochemistry) of hippocampus in the mice with Alzheimer's disease induced by ${\beta}A$. These results suggest that the Gin-CHF extract may be effective for the prevention and treatment of Alzheimer's disease. Investigation into the clinical use of the Gin-CHF extract for Alzheimer's disease is suggested for further research.

Alzheimer's Disease Classification with Automated MRI Biomarker Detection Using Faster R-CNN for Alzheimer's Disease Diagnosis (치매 진단을 위한 Faster R-CNN 활용 MRI 바이오마커 자동 검출 연동 분류 기술 개발)

  • Son, Joo Hyung;Kim, Kyeong Tae;Choi, Jae Young
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.10
    • /
    • pp.1168-1177
    • /
    • 2019
  • In order to diagnose and prevent Alzheimer's Disease (AD), it is becoming increasingly important to develop a CAD(Computer-aided Diagnosis) system for AD diagnosis, which provides effective treatment for patients by analyzing 3D MRI images. It is essential to apply powerful deep learning algorithms in order to automatically classify stages of Alzheimer's Disease and to develop a Alzheimer's Disease support diagnosis system that has the function of detecting hippocampus and CSF(Cerebrospinal fluid) which are important biomarkers in diagnosis of Alzheimer's Disease. In this paper, for AD diagnosis, we classify a given MRI data into three categories of AD, mild cognitive impairment, and normal control according by applying 3D brain MRI image to the Faster R-CNN model and detect hippocampus and CSF in MRI image. To do this, we use the 2D MRI slice images extracted from the 3D MRI data of the Faster R-CNN, and perform the widely used majority voting algorithm on the resulting bounding box labels for classification. To verify the proposed method, we used the public ADNI data set, which is the standard brain MRI database. Experimental results show that the proposed method achieves impressive classification performance compared with other state-of-the-art methods.

Acid sphingomyelinase inhibition improves motor behavioral deficits and neuronal loss in an amyotrophic lateral sclerosis mouse model

  • Byung Jo, Choi;Kang Ho, Park;Min Hee, Park;Eric Jinsheng, Huang;Seung Hyun, Kim;Jae-sung, Bae;Hee Kyung, Jin
    • BMB Reports
    • /
    • v.55 no.12
    • /
    • pp.621-626
    • /
    • 2022
  • Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by the degeneration of motor neurons in the spinal cord. Main symptoms are manifested as weakness, muscle loss, and muscle atrophy. Some studies have reported that alterations in sphingolipid metabolism may be intimately related to neurodegenerative diseases, including ALS. Acid sphingomyelinase (ASM), a sphingolipid-metabolizing enzyme, is considered an important mediator of neurodegenerative diseases. Herein, we show that ASM activity increases in samples from patients with ALS and in a mouse model. Moreover, genetic inhibition of ASM improves motor function impairment and spinal neuronal loss in an ALS mouse model. Therefore, these results suggest the role of ASM as a potentially effective target and ASM inhibition may be a possible therapeutic approach for ALS.

Alzheimer Disease Diagnosis using Magnetic Bead (자기 비드를 이용한 알츠하이머병 조기 진단 방법에 대한 연구)

  • Chae, Cheol-Joo;Cho, Jung-Min;Kang, Jae-Min;Kim, Kwan-Su;Song, Ki-Bong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.219-219
    • /
    • 2010
  • In a past, the method in which it used the fluorescent material or it analyzes a gene was used in order to detect the Alzheimer's disease. However, in this paper, the magnetic bead is used in order to detect the Alzheimer's disease. The 'magnetic bead used in this paper is able to make the amyloid-beta and the selective binding known as cause of the Alzheimer's disease.

  • PDF

Effects of Ginseng Radix plus Crataegi Fructus on the Gene Expression in Relation to Alzheimer's Disease. (인삼산사복합방(人蔘山査複合方)이 Alzheimer성 치매와 관련된 유전자 발현(發顯)에 미치는 영향)

  • Han, Sin-Hee;Kil, Gi-Jung
    • The Korea Journal of Herbology
    • /
    • v.21 no.4
    • /
    • pp.133-141
    • /
    • 2006
  • Objectives : This research was investigated the effect of the Ginseng Radix plus Crataegi Fructus on the gene expression in relation to Alzheimer's disease. Methods : Observed gene expression of the Ginseng Radix plus Crataegi Fructus extract on $IL-1{\beta}$, IL-6, $TNF-{\alpha}$, COX-2, and NOS-II mRNA of BV2 microglia cell line treated with lipopolysacchride. Results : The Ginseng Radix plus Crataegi Fructus extract suppressed the gene expression of $IL-1{\beta}$, IL-6, $TNF-{\alpha}$, COX-2, NOS-II mRNA in BV2 microglia cell line treated with lipopolysacchride. Conclusion : These results suggest that the Ginseng Radix plus Crataegi Fructus extract may be effective for the prevention and treatment of Alzheimer's disease. Investigation into the clinical use of the Ginseng Radix plus Crataegi Fructus extract for Alzheimer's disease is suggested for future research.

  • PDF

The Effects of KongJin-Dan(KJD) on the Alzheimer's Disease Model Induced by CT105 (공진단(拱辰丹)이 CT105로 유도된 Alzheimer's disease 병태(病態)모델에 미치는 영향)

  • Chung, Dae-Kyoo;Hwang, Seon-Mi
    • Journal of Oriental Neuropsychiatry
    • /
    • v.15 no.2
    • /
    • pp.103-118
    • /
    • 2004
  • Objective : This experiment was designed to investigate the effect of KongJin-dan(KJD) on the Alzheimer's disease. Method : The effects of KJD on $LI-1{\beta}$, IL-6, $TNF-{\alpha}$, amyloid precursor proteins(APP), acetylcholinesterase(AChE), glial fibrillary acidic protein(GFAP) mRNA of PC-12 and THP-1 cell treated by CT105 and AChE activity, APP production of PC-12 cell lysate treated by CT105 were investigated, respectively. Results : 1. KJD suppressed $LI-1{\beta}$, IL-6, $TNF-{\alpha}$, APP, AChE, GFAP mRNA in THP-1 and PC-12 cell treated by CT105. 2. KJD suppressed AChE activity and production of APP significantly in cell lysate of PC-12 cell treated by CT105. Conclusions : This study shows that KJD might be usefully applied for prevention and treatment of Alzheimer's disease.

  • PDF