• 제목/요약/키워드: aluminum tube

검색결과 243건 처리시간 0.027초

A Study on Deformation Behaviors of Al 6061, 7075 Tube at Different Heat Treatments for Warm Hydroforming (온간액압성형공정 적용을 위한 알루미늄 6061, 7075 튜브의 열처리조건에 따른 변형특성연구)

  • Yi, Hyae-Kyung;Moon, Young Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • 제20권1호
    • /
    • pp.1-10
    • /
    • 2007
  • The deformation behaviors of full annealed and T6 treated 6061, 7075 aluminum tubes are investigated at various temperature performing uniaxial tensile test. Full annealed Al 6061 and Al7075 tubes, and T6 treated Al7075 tube don't show sharp local necking with an elongation of 50% at $300^{\circ}C$. So it is expected that influenced by elevated tempterature. At $300^{\circ}C$ and strain rate of 0.001/s, many micro-cracks are observed in T6 treated Al 6061 tube, which is believed to be responsible for the decrease of total elongation.

Formation and Growth of Hydride Blisters in Zr-2.5Nb Pressure Tubes

  • Cheong, Yong-Moo;Gong, Un-Sik;Choo, Ki-Nam;Kim, Sung-Soo;Kim, Young-Suk
    • Nuclear Engineering and Technology
    • /
    • 제33권2호
    • /
    • pp.192-200
    • /
    • 2001
  • Hydride blisters were formed on the outer surface of Zr-2.5Nb pressure tube by a non- uniform steady thermal diffusion process. A thermal gradient was applied to the pressure tube with a heat bath kept at a temperature of 415$^{\circ}C$ and an aluminum cold finger cooled with flowing water of 15$^{\circ}C$. Optical microscopy and tree-dimensional laser profilometry were used to characterize the hydride blisters with different hydrogen concentrations and thermal diffusion time. Hydride blisters were expected to start at a hydrogen concentration of 30 - 70 ppm and a thermal diffusion time of 4 - 6$\times$10$^{5}$ sec. The hydride blister size increases with higher hydrogen concentrations and longer thermal diffusion time . Some of the samples revealed cracks on the hydride blisters. The ratio of hydride blister depth to height was estimated as approximately 8: 1.

  • PDF

An Experimental Study of Flow Boiling Heat Transfer inside Small-Diameter Round Tubes (원형 세관내 대류비등열전달에 관한 실험적 연구)

  • 추원호;방광현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제16권8호
    • /
    • pp.748-755
    • /
    • 2004
  • Flow boiling heat transfer in small-diameter round tubes has been experimentally studied. The experimental apparatus consisted mainly of refrigerant pump, condenser, receiver, test section of a 1.67 mm inner-diameter round tube and pre-heater for control of refrigerant quality at the inlet of test section. To investigate the effect of bubble nucleation site characteristics of different tube materials, three different tubes of copper, aluminum and brass were used. The ranges of the major experimental parameters were 5∼30 ㎾/$m^2$ of the wall heat flux, 0.0∼0.9 of the inlet vapor quality and the refrigerant mass flux was fixed at 600 kg/$m^2$s. The experimental results showed that the flow boiling heat transfer coefficients in small tubes were affected only by heat flux, but independent of mass flux and vapor quality. The effect of tube material on flow boiling heat transfer was observed small.

Dosimetry according to the X-ray Tube Voltage, Radiation Field and the Object Thickness (관전압(管電壓)과 조사야(調査野) 및 피사체(被寫體)의 변화에 따른 선량분포(線量分布))

  • Lee, Sang-Suk;Park, Sung-Ock
    • Journal of radiological science and technology
    • /
    • 제3권1호
    • /
    • pp.73-80
    • /
    • 1980
  • We studied about dosimetry according to the X-ray tube voltage, radiation field object thickness and obtained results as follow. 1. Secondary ray involing rate in the penetrated radiation increased proportion to the tube voltage, but its rate is more larger at the small radiation fields. than large fields. 2. Secondary ray involving rate in the penetrated radiation increased at thick object and large exposure fields. But saturated phenomenon appeared at limited field. 3. Secondary involving rate of acryl phantom is more top place than water, paraffin and aluminum phantom.

  • PDF

Investigation of Firing Conditions for Optimizing Aluminum-Doped p+-layer of Crystalline Silicon Solar Cells

  • Lee, Sang Hee;Lee, Doo Won;Shin, Eun Gu;Lee, Soo Hong
    • Current Photovoltaic Research
    • /
    • 제4권1호
    • /
    • pp.12-15
    • /
    • 2016
  • Screen printing technique followed by firing has commonly been used as metallization for both laboratory and industrial based solar cells. In the solar cell industry, the firing process is usually conducted in a belt furnace and needs to be optimized for fabricating high efficiency solar cells. The printed-Al layer on the silicon is rapidly heated at over $800^{\circ}C$ which forms a layer of back surface field (BSF) between Si-Al interfaces. The BSF layer forms $p-p^+$ structure on the rear side of cells and lower rear surface recombination velocity (SRV). To have low SRV, deep $p^+$ layer and uniform junction formation are required. In this experiment, firing process was carried out by using conventional tube furnace with $N_2$ gas atmosphere to optimize $V_{oc}$ of laboratory cells. To measure the thickness of BSF layer, selective etching was conducted by using a solution composed of hydrogen fluoride, nitric acid and acetic acid. The $V_{oc}$ and pseudo efficiency were measured by Suns-$V_{oc}$ to compare cell properties with varied firing condition.

Microstructures and Texture of Al/Al2O3 Composites Fabricated by a Powder-in Sheath Rolling Method (분말시스압연법에 의해 제조한 Al/Al2O3 복합재료의 미세조직 및 집합조직)

  • 이성희;이충효
    • Journal of Powder Materials
    • /
    • 제10권2호
    • /
    • pp.103-107
    • /
    • 2003
  • Aluminum-based $Al/Al_2O_3$ composites were fabricated by a powder-in sheath rolling method. A stainless steel tube with outer diameter of 12 mm and wall thickness of 1 mm was used as a sheath. A mixture of aluminum powder and $Al_2O_3$ particles of which volume content was varied from 5 to 20%, was filled in the tube by tap filling and then rolled by 75% reduction in thickness at ambient temperature. The rolled specimen was then sintered at 56$0^{\circ}C$ for 0.5 h. The mixture of Al powders and $Al_2O_3$ particles was successfully consolidated by the sheath rolling. The $Al/Al_2O_3$ composite fabricated by the sheath rolling showed a recrystallized structure, while unreinforced Al powder compact fabricated by the same procedure showed a deformed structure. The unreinforced Al powder compact was characterized by a deformation (rolling) texture of which main component is {112}<111>, while the $Al/Al_2O_3$ composite showed a mixed texture oi deformation and recrystallization. The sintering resulted in recrystallization in Al powder compact and grain growth in the composite.

Microstructure and Mechanical Properties of (SiC)p/Al Composite Fabricated by a Powder-in Sheath Rolling Method (분말피복압연법에 의해 제조된 (SiC)p/Al 복합재료의 미세조직 및 기계적 성질)

  • 이성희;이충효
    • Journal of Powder Materials
    • /
    • 제11권3호
    • /
    • pp.259-264
    • /
    • 2004
  • Aluminum based metal matrix composite reinforced with SiC particles was fabricated by the powder-in sheath rolling method. A stainless steel tube with outer diameter of 12 mm and wall thickness of 1mm was used as a sheath. Mixture of aluminum powder and SiC particles of which volume content was varied from 5 to 20vol.% was filled in the tube by tap filling and then rolled to 75% reduction at ambient temperature. The rolled specimen was sintered at 56$0^{\circ}C$ for 0.5hr. The tensile strength of the (SiC)$_{p}$/Al composite increased with the volume content of SiC particles, and at 20vol.% it reached a maximum of 100㎫ which is 1.6 times higher than unreinforced material. The elongation decreased with the volume content of $Al_{2}$O$_{3}$ particles. The mechanical properties of the (SiC)$_{p}$/Al composite fabricated by the powder-in sheath rolling is compared with that of (Al$_{2}$O$_{3}$)$_{p}$/Al composite by the same process.ess.

Fabrication of nano-structured PMMA substrates for the improvement of the optical transmittance (반구형 나노 패턴의 크기에 따른 PMMA기판의 광특성 평가)

  • Park, Y.M.;Shin, H.G.;Kim, B.H.;Seo, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.217-220
    • /
    • 2009
  • This paper presents fabrication method of nano-structured PMMA substrates as well as evaluations of their optical transmittance. For anti-reflective surface, surface coating method had been conventionally used. However, it requires high cost, complicated process and post-processing times. In this study, we suggested the fabrication method of anti-reflective surface by the hot embossing process. Using the nano patterned master fabricated by anodic aluminum oxidation process. Anodic aluminum oxide(AAO) is widely used as templates or a molds for various applications such as carbon nano tube (CNT), nano rod and nano dots. Anodic aluminum oxidation process provides highly ordered regular nano-structures on the large area, while conventional pattering methods such as E-beam and FIB can fabricate arbitrary nano-structures on small area. We fabricated a porous alumina hole array with various inter-pore distance and pore diameter. In order to replicate nano-structures using alumina nano hole array patterns, we have carried out hot-embossing process with PMMA substrates. Finally the nano-structured PMMA substrates were fabricated and their optical transmittances were measured in order to evaluate the charateristivs of anti-reflection. Anti-reflective structure can be applied to various displays and automobile components.

  • PDF

Performance Design of Aluminum EGR Cooler Consisting of Extruded Tubes for LPL EGR System (LPL EGR 시스템용 압출 튜브 구조의 알루미늄 EGR 쿨러 성능 설계)

  • Heo, Hyungseok;Bae, Sukjung;Kang, Taegu;Lee, Junyong;Seo, Hyeongjun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제25권1호
    • /
    • pp.42-50
    • /
    • 2017
  • A study has been conducted to develop an aluminum EGR cooler for the LPL EGR system of a diesel engine. Aluminum has a much lower density and thermal conductivity that is about 12 times or more than that of stainless steel, so it is advantageous for use in an EGR cooler for weight reduction and cooling performance effects. A design process has been carried out to ensure heat dissipation performance in a restricted space to investigate the geometric parameters and satisfy the requirements for pressure drops at both fluid sides. The tubes of exhaust gas have been designed as extruded tubes. An aluminum EGR cooler consisting of extruded tubes entails a simpler manufacturing process compared to a stainless steel EGR cooler with conventional heat transfer fins. A prototype has been manufactured from the final model selected through the design process. The performance of the aluminum EGR cooler was evaluated and compared with that of the conventional one. The weight of the aluminum EGR cooler is reduced by 22.9%, while performance is significantly improved.

Development of a Practical Two-Microphone Impedance Tube Method for Sound Transmission Loss Measurement of Sound Isolation Materials

  • Ro, Sing-Nam;Hwang, Yoon;Lee, Dong-Hoon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권3호
    • /
    • pp.105-113
    • /
    • 2003
  • This study developed a practical two-microphone impedance tube method to measure the sound transmission loss of sound isolation materials without the use of an expensive reverberation room or an acoustic intensity probe. In order to evaluate the validation and applicability of the two-microphone impedance tube method, sound transmission losses for several sound isolation materials with different surface density and bending stiffness were measured, and the measured values were compared with the results from the reverberation room method and the theory. From the experimental results, it was found that the accuracy of sound transmission loss obtained by the impedance tube method depends upon the diameter size of the impedance tube (i.e., tested sample size). For sound isolation materials having relatively large bending stiffness such as acryl, wood, and aluminum plates, it was found that the impedance tube method proposed by this study was not valid to measure the sound transmission loss. On the other hand, for sound isolation materials having relatively small bending stiffness such as rubber, polyvinyl, and asphalt sheets, the comparisons of transmission loss between the results from the impedance tube method and the theory showed a good agreement within the range of the frequencies satisfying the normal incidence mass law. Therefore, the two-microphone impedance tube method proposed by this study can be an effective measurement method to evaluate the sound transmission loss for soft sound isolation sheets having relatively small bending stiffness.