• 제목/요약/키워드: aluminum tube

검색결과 243건 처리시간 0.031초

Effect of scattered x-rays on subject contrast and image sharpness

  • Arimura, Hidetaka;Date, Takuji;Morikawa, Kaoru;Kubota, Hideaki;Matsumoto, Masao;Kanamori, Hitoshi
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 1999년도 Japanese Journal of Medical Physics
    • /
    • pp.278-281
    • /
    • 1999
  • The purpose of this study is to investigate the effect of the scattered x-rays on the subject contrast and image sharpness for various tube voltages. For the purpose, we measured the scatter-to-primary ratio(SPR) for the tube voltages f 50 to 100kV and obtained the tube voltage dependence of the subject contrast of an aluminum plate in a polymethyl methacrylate(PMMA) phantom. Furthermore, the overall modulation transfer functions(MTFs), which consist of MTFs of a screen-film system and scatter FTMs, were obtained for tube voltages of 50 to 100 kV. The subject contrast decreased with the tube voltage due to that the SPR increased with the tube voltage and that the difference in effective linear attenuation coefficients between the object and its surroundings decreased with the tube voltage. The maximum frequency of the overall MTF decreased from about 2 mm$\^$-1/ to 1 mm$\^$-1/ with the tube voltage increasing from 50 to 100 kV.

  • PDF

온간하이드로포밍을 이용한 알루미늄 자동차부품 제조기술 개발 (Development of Manufacturing Technology for Aluminum Automotive part with Warm Hydroforming)

  • 손성만;이문용;김봉준;문영훈;이영선
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 제5회 박판성형 SYMPOSIUM
    • /
    • pp.93-98
    • /
    • 2006
  • Warm forming technology was classified into hot gas forming of using compressible fluid as a nitrogen gas and warm hydroforming of using the incompressible fluid as a thermal oil by using medium fluid. In this study, the aluminum side-rail part was developed with warm hydroforming technology. For the warm hydroforming system, top and bottom die was designed to insert heating cartridge in die cavity and special indirect fluid heating system was designed to heat the thermal oil. As increase the temperature, hydroformability was increased linearly. Aluminum side-rail center part was formed 90% at the internal pressure of 100bar and perfectly formed at 300bar within a moderate temperature. The tube material used for warm hydroforming was a aluminum 6000 series alloy with the diameter of 120mm, thickness of 5mm, length of 1,300mm. Warm hydroformed side-rail center part had 20% of maximum expansion ratio and below 20% of maximum thinning ratio at corner radius. This results were provided to show warm hydroforming possibility for aluminum automotive components.

  • PDF

알루미늄칩과 타공판을 이용한 방음벽 충진재의 흡음특성 (Absorption Characteristics of Sound Proof Wall by Scrap Aluminum and Perforated Plate)

  • 이영중;김대건;박경화;김영도
    • 한국재료학회지
    • /
    • 제19권7호
    • /
    • pp.382-385
    • /
    • 2009
  • Efforts to reduce noise in industrial application fields, such as automobiles, aircrafts, and plants have been gaining considerable attention while a sound proof wall to protect people from the noise has been intensively investigated by many researchers. In this study, our research group suggested creating a new sound proof wall composed of scrap aluminum chips and perforated plates in a commercial polyester sound proof wall, which was then successfully fabricated. This wall's sound absorption characteristics were measured by an impedance tube method. The sound absorption property was evaluated by measuring the Noise Reduction Coefficient (NRC) to the standard, ASTM C 423-90a. The noise reduction coefficient of the sound proof wall composed of 3.5 vol.% and 7.5 vol.% of scrap aluminum chips relatively increased to 5% and 8% compared to the commercial polyester sound proof wall. The scrap aluminum perforated plate also relatively increased to 13% compared to the commercial polyester sound proof wall.

Application of a foil transfer for CRT Screen processing

  • Ryu, Sang-Chul;Kim, Sang-Mun;Lee, Koo-Hwa;Keun, Yoon-Kyung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.864-867
    • /
    • 2002
  • LG Electronics developed a perfect flat color display tube which was named "FLATRON" . This tube provides ergonomic performances with perfectly flat face and innovative manufacturing process. Foil transfer is a new technology for manufacturing screen layer for Flatron. Its main features include several properties of film, releasing agent, adhesive, aluminum layer, holes after bake-out and foil transfer process. It will be used innovative and cost oriented process for FLATRON for in CRT mass production..

  • PDF

사지(四肢) 단순촬영조건(單純撮影條件)의 관전압(管電壓)에 대(對)한 연구(硏究) (A Study on Kilovoltage in Radiographic Technique Factors of the Extremities)

  • 최종학;전만진;김영일
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제3권1호
    • /
    • pp.29-35
    • /
    • 1980
  • The tube voltage in radiographic technique factors of the extremities was studied to use the acryl phantom and aluminum step wedge. It was the proper tube voltage that was over 55-60kV in the finger, over 65kV in the forearm and over 75kV in the knee joint.

  • PDF

알루미늄 평판관 증발기 헤더 내 공기-물 2상류 분지 실험 (Distribution of Air-Water Two-Phase Flow in a Header of Aluminum Flat Tube Evaporator)

  • 김내현;신태룡;심용섭
    • 설비공학논문집
    • /
    • 제18권1호
    • /
    • pp.55-65
    • /
    • 2006
  • The air and water flow distribution are experimentally studied for a round header - flat tube geometry simulating a parallel flow heat exchanger. The number of branch flat tube is thirty. The effects of tube outlet direction, tube protrusion depth as well as mass flux, and quality are investigated. The flow at the header inlet is identified as annular. For the downward flow configuration, the water flow distribution is significantly affected by the tube protrusion depth. For flush-mounted configuration, most of the water flows through frontal part of the header. As the protrusion depth increases, more water is forced to the rear part of the header. The effect of mass flux or quality is qualitatively the same as that of the protrusion depth. Increase of the mass flux or quality forces the water to rear part of the header. For the upward flow configuration, however, most of the water flows through rear part of the header. The protrusion depth, mass flux, or quality does not significantly alter the flow pattern. Possible explanations are provided based on the flow visualization results. Negligible difference on the water flow distribution was observed between the parallel and the reverse flow configuration.

On the forced vibration of high-order functionally graded nanotubes under the rotation via intelligent modeling

  • Liu, Yang;Wang, Xiaofeng;Liu Li;Wu, Bin;Yang, Qin
    • Advances in nano research
    • /
    • 제13권1호
    • /
    • pp.47-61
    • /
    • 2022
  • The present research investigates the dynamic behavior of a rotating functionally graded (FG) nonlocal cylindrical beam. The cylindrical beam is mathematically modeled via third-order beam theory linked with nonlocal strain gradient theory. The tube structure is made of functionally graded materials composed of Aluminum oxide coated on the Nickel, which the mechanical properties vary in the tube radius direction according to the power law. The bending harmonic force is applied in the tube length middle. The nonlocal spinning equations of the tube are derived via the energy method of the Hamilton principle, and they are solved via a robust numerical procedure for different boundary conditions. The main application of the rotating nanostructures is for the production of small-scale motors and devices and the drug-delivery application, the presented results can help the researcher have a better view regarding the different conditions.

Mechanical properties of new stainless steel-aluminum alloy composite joint in tower structures

  • Yingying Zhang;Qiu Yu;Wei Song;Junhao Xu;Yushuai Zhao;Baorui Sun
    • Steel and Composite Structures
    • /
    • 제49권5호
    • /
    • pp.517-532
    • /
    • 2023
  • Tower structures have been widely used in communication and transmission engineering. The failure of joints is the leading cause of structure failure, which make it play a crucial role in tower structure engineering. In this study, the aluminum alloy three tube tower structure is taken as the prototype, and the middle joint of the tower was selected as the research object. Three different stainless steel-aluminum alloy composite joints (SACJs), denoted by TA, TB and TC, were designed. Finite element (FE) modeling analysis was used to compare and determine the TC joint as the best solution. Detail requirements of fasteners in the TC stainless steel-aluminum alloy composite joint (TC-SACJ) were designed and verified. In order to systematically and comprehensively study the mechanical properties of TC-SACJ under multi-directional loading conditions, the full-scale experiments and FE simulation models were all performed for mechanical response analysis. The failure modes, load-carrying capacities, and axial load versus displacement/stain testing curves of all full-scale specimens under tension/compression loading conditions were obtained. The results show that the maximum vertical displacement of aluminum alloy tube is 26.9mm, and the maximum lateral displacement of TC-SACJs is 1.0 mm. In general, the TC-SACJs are in an elastic state under the design load, which meet the design requirements and has a good safety reserve. This work can provide references for the design and engineering application of aluminum alloy tower structures.

Soft Plasma Flash X-ray Generator Utilizing a Vacuum Discharge Capillary

  • Sato, Eiichi;Hayasi, Yasuomi;Usuki, Tatsumi;Sato, Koetsu;Takayama, Kazuyoshi;Ido, Hideaki
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.400-403
    • /
    • 2002
  • The fundamental experiments for measuring soft x-ray characteristics from the vacuum capillary are described. These experiments were primarily performed in order to generate line spectra such as x-ray lasers. The generator consists of a high-voltage power supply, a polarity-inversion ignitron pulse generator, a turbo-molecular pump, and a radiation tube with a capillary. A high-voltage condenser of 200 nF in the pulse generator is charged up to 20 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing the ignitron. During the discharge, weakly ionized plasma forms on the inner and outer sides of a capillary. In the present work, the pump evacuates air from the tube with a pressure of about 1 mPa, and a demountable capillary was developed in order to measure x-ray spectra according to changes in the capillary length. In this capillary, the anode (target) and cathode elements can be changed corresponding to the objectives. The capillary diameter is 2.0 mm, and the length is adjusted from 1 to 50 mm. When a capillary with aluminum anode and cathode electrodes was employed, both the cathode voltage and the discharge current almost displayed damped oscillations. The peak values of the voltage and current increased when the charging voltage was increased, and their maximum values were -10.8 kV and 4.7 kA, respectively. The x-ray durations observed by a 1.6 ${\mu}$m aluminum filter were less than 30 ${\mu}$s, and we detected the aluminum characteristic x-ray intensity using a 6.8 ${\mu}$m aluminum filter. In the spectrum measurement, two sets of aluminum and titanium electrodes were employed, and we observed multi-line spectra. The line photon energies seldom varied according to changes in the condenser charging voltage and to changes in the electrode element. In the case where the titanium electrode was employed, the line number decreased with corresponding decreases in the capillary length. Compared with incoherent visible light, these rays from the capillary were diffracted and diffused greatly after passing through two slits.

  • PDF

Assessment of radiopacity of restorative composite resins with various target distances and exposure times and a modified aluminum step wedge

  • Mir, Arash Poorsattar Bejeh;Mir, Morvarid Poorsattar Bejeh
    • Imaging Science in Dentistry
    • /
    • 제42권3호
    • /
    • pp.163-167
    • /
    • 2012
  • Purpose: ANSI/ADA has established standards for adequate radiopacity. This study was aimed to assess the changes in radiopacity of composite resins according to various tube-target distances and exposure times. Materials and Methods: Five 1-mm thick samples of Filtek P60 and Clearfil composite resins were prepared and exposed with six tube-target distance/exposure time setups (i.e., 40 cm, 0.2 seconds; 30 cm, 0.2 seconds; 30 cm, 0.16 seconds, 30 cm, 0.12 seconds; 15 cm, 0.2 seconds; 15 cm, 0.12 seconds) performing at 70 kVp and 7 mA along with a 12-step aluminum stepwedge (1 mm incremental steps) using a PSP digital sensor. Thereafter, the radiopacities measured with Digora for Windows software 2.5 were converted to absorbencies (i.e., A=-log (1-G/255)), where A is the absorbency and G is the measured gray scale). Furthermore, the linear regression model of aluminum thickness and absorbency was developed and used to convert the radiopacity of dental materials to the equivalent aluminum thickness. In addition, all calculations were compared with those obtained from a modified 3-step stepwedge (i.e., using data for the 2nd, 5th, and 8th steps). Results: The radiopacities of the composite resins differed significantly with various setups (p<0.001) and between the materials (p<0.001). The best predicted model was obtained for the 30 cm 0.2 seconds setup ($R^2$=0.999). Data from the reduced modified stepwedge was remarkable and comparable with the 12-step stepwedge. Conclusion: Within the limits of the present study, our findings support that various setups might influence the radiopacity of dental materials on digital radiographs.