• Title/Summary/Keyword: aluminum plates

Search Result 219, Processing Time 0.024 seconds

QUANTITATIVE ANALYSIS OF THE ALVEOLAR BONE CHANGE BY THE DIGITAL SUBTRACTION RADIOGRAPHY (Digital subtraction radiography를 이용한 치조골 변화의 정략적 분석)

  • Ryue, Myung-Girl;Chung, Hyun-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.1
    • /
    • pp.67-75
    • /
    • 1995
  • The progress of periodontal disease and the wound healing process after treatment result in alveolar bone bone change. So, detection of it is very important in the diagnosis and the radiograph of periodontal disease. Various effects have been made to assess the subtle alveolar bone change and digital subtraction radiography (DSR) has been reported to be the best method in evaluating it qualitatively and quantitatively. The present study was performed to estimate the detectable alveolar bone change qualitatively with digital subtraction radiography. For the in vitro study, 10 intraoral standard radiographs were taken from porcine dry mandible which a rectangular cortical bone chip of 0.1mm to 1.0mm thickness with 0.1mm increment was attached on the buccal surface. The radiographs without and with bone plates were reviewed at the same time by 10 observers and requested to detect the presence of cortical bone plates. Digital Subtraction radiograph was reviewed subsequently by using the DSR system(digital converter-256 grey-levels,DT 2851,Data Translation Co., U.S.A;IBM 386 ; CCD camera, FOTOVIX, Tamrom Co., Japan). The detectable thickness of cortical bone plate was O.4mm on the intraoral radiograph and 0.2mm on the subtaction images. For the human study, radiographs were taken from patients by using intraoral film holding device and aluminum reference wedge before and 3 month after bone graft and 1 week after osteoplasty. The grey level change was estimated in the subtraction images and calculated to aluminum equivalent thickness. The grey level of the grafted site was higher that that of healthy controls. Average grey levels of change on healthy controls were O.48mm aluminum equivalent. However, the amount of changes in grafted sites were 1.87mm aluminum thickness equivalent and in the site of osteoplasty were -1.49mm aluminum thickness equivalent. In conclusion, digital subtraction radiography was more effective in detecting as subtle change of alveolar bone than intraoral standard radiography. With the aid of quantitative analysis of digital subtraction radiography, alveolar bone resorption of apposition can be estimated during diagnosis and treatment of periodontally diseased patients.

  • PDF

Comparison of Signal Powers Generated with Metal Hammer Plate and Plastic Hammer Plate (금속 및 플라스틱 재질의 해머 타격판에 의해 발생된 신호의 파워 비교)

  • Kim, Jin-Hoo;Lee, Young-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.282-288
    • /
    • 2011
  • One of the most challenging issues facing shallow seismic survey is how to generate large amplitude of high frequency signal with small seismic sources. We tested the performance of the most commonly used shallow seismic source, hammer, with four plates: PE, nylon, aluminum, and steel plates. We compared their signal powers in terms of impulsive forces, accelerations, and ground vibration velocities caused by hammer impacts. According to a previous work, hammer blowing to an aluminum plate would generate the largest amplitude among four combinations. However, it was found in this experimental research that aluminum plate delivers seismic wave energy to the ground less than that generated with steel or PE plate. Even though the amplitude is relatively small, plastic plates could provide seismic pulses of 180 ~ 200 Hz in the bandwidth, and it seems to be very hard to generate seismic energy over the frequency of 250 Hz.

Optimal design of a lightweight composite sandwich plate used for airplane containers

  • Al-Fatlawi, Alaa;Jarmai, Karoly;Kovacs, Gyorgy
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.611-622
    • /
    • 2021
  • Composite material-due to low density-causes weight savings, which results in lower fuel consumption of transport vehicles. The aim of the research was to change the existing base-plate of the aluminum airplane container with the composite sandwich plate in order to reduce the weight of the containers of cargo aircrafts. The newly constructed sandwich plate consists of aluminum honeycomb core and composite face-sheets. The face-sheets consist of glass or carbon or hybrid fiber layers. The orientations of the fibers in the face-sheets were 0°, 90° and ±45°. Multi-objective optimization method was elaborated for the newly constructed sandwich plates. Based on the design aim, the importance of the objective functions (weight and cost of sandwich plates) was the same (50%). During the optimization nine design constraints were considered: stiffness, deflection, facing stress, core shear stress, skin stress, plate buckling, shear crimping, skin wrinkling, intracell buckling. The design variables were core thickness and number of layers of the face-sheets. During the optimization both the Weighted Normalized Method of the Excel Solver and the Genetic Algorithm Solver of Matlab software were applied. The mechanical properties of composite face-sheets were calculated by Laminator software according to the Classical Lamination Plate Theory and Tsai-Hill failure criteria. The main added-value of the study is that the multi-objective optimization method was elaborated for the newly constructed sandwich structures. It was confirmed that the optimal new composite sandwich construction-due to weight savings and lower fuel consumption of cargo aircrafts - is more advantageous than conventional all-aluminum container.

Modified Octet Truss Cellular Metals Fabricated by Expanding Metal Process (I) - Compression and Shear Properties - (확장금속망 공정으로 제작된 옥테트 트러스 다공질 금속 (I) - 압축 및 전단 특성 -)

  • Joo, Jai-Hwang;Lee, Dong-Seok;Jeon, In-Su;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.11
    • /
    • pp.1124-1130
    • /
    • 2007
  • This paper presents a new way for fabricating sandwich plates with tetrahedral truss cores. The tetrahedral truss cores are manufactured through metal expanding and bending process and then brazed with solid face sheets. The properties of sandwich plates with the tetrahedral truss cores composed of a wrought steel SS41 under compression and shear loading have been investigated. Good agreement is observed between the measured and predicted peak strengths. Comparisons with normalized compressive strength for other cellular metals have indicated that the tetrahedral truss structures outperform aluminum open cell forms and woven core sandwich plates.

Study of sound absorption characteristics using the sintered aluminium plate (알루미늄 소결재를 이용한 흡음 특성 연구)

  • 노대호;김재수;윤진국;강현주;신종철;김원용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1071-1076
    • /
    • 2002
  • The purpose of this paper is to examine sound absorption characteristics of sintered Al(aluminum) plate. Comparison between experiment and theoretical analysts by using empirical formula are made. Based on comparison. it is found that Voronina model gives more reasonable explanation for sound absorption characteristics of sintered Al plates. Effect of air gap with varying the thickness of plates are also investigated, which concludes that the air gap generally increase absorption but for too thick thickness of Al plates. Al plates with air gap shows 0.85∼0.9 of NRC(Noise Reduction Coefficient) measured in reverberation room. which is comparable to glass wool. Comparison between normal and random Incident absorption shows that random incident absorption is higher than normal incident absorption.

  • PDF

A Study on Fracture Behaviors of Single-Edge-Notched Glass Fiber/Aluminum Laminates Using Acoustic Emission (음향방출법을 이용한 편측노치를 갖는 유리섬유/알루미늄 적층판의 파괴거동 해석)

  • Woo Sung-Choong;Choi Nak-Sam
    • Composites Research
    • /
    • v.18 no.2
    • /
    • pp.1-12
    • /
    • 2005
  • Fracture behaviors of single-edge-notched monolithic aluminum plates and glass fiber/aluminum laminates under tensile loadings have been studied using acoustic emission(AE) monitoring. AE signals from monolithic aluminum could beclassified into two different types. For glass fiber/aluminum laminates, AE signals with high amplitude and long duration were additionally confirmed on FFT frequency analysis, which corresponded to macrocrack propagation and/or delamination. AE source location determined by signal arrival time showed the zone of fracture. On the basis of the above AE analysis and fracture observation, characteristic features of fracture processes of single-edge-notched glass fiber/aluminum laminates were elucidated according to different fiber ply orientations and fiber/aluminum lay-up ratios.

Tensile Properties of Plate Attached Open Cell Aluminium Foams (판이 부착된 개포형 발포 알루미늄의 인장특성)

  • Kang, Bok-Hyun;Bu, Sung-Duk;Kim, Ki-Young
    • Journal of Korea Foundry Society
    • /
    • v.27 no.2
    • /
    • pp.83-87
    • /
    • 2007
  • Aluminum plates of the same materials as the foam were attached by the casting process inserting the foam as a core to investigate the tensile property of open cell foams. Tensile properties of the open cell 6063 aluminum alloy foam of $10{\sim}30$ PPI were measured before and after heat treatment. Densities of test specimens were between 0.14 and $0.29g/cm^3$. Tensile strength of the 6063 aluminum foam after heat treatment showed little change. C values were in the range of $0.41{\sim}0.87$ for as cast foams and $0.11{\sim}0.27$ for T6 heat treated foams in the eq. of ${\sigma}^* _{pl}/{\sigma}_{ys}=C({\rho}/{\rho}_s)^{1.5}$, and increased with increase in the cell size.

Analysis of Electrocoagulation Process using Faraday's Law (Faraday's Law에 의한 전기응집공정의 분석)

  • Kim, Hye-Sook;Yun, Young-Im;Cho, Eun-Jeong;Choi, Yun-Hee;Oh, Mi-Young;Kim, Yeong-Kwan
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.351-355
    • /
    • 2001
  • This research was carried out to find out the possibility of using Faraday's law in analyzing the electrocoagulation system. Bench-scale reactor equipped with aluminum electrode plates was operated using synthetic wastewater which received sodium chloride for conductivity adjustment. Phosphate was added to the wastewater to induce the precipitation with Al. The amount of aluminum dissolved from the electrodes could be predicted by Faraday's law with a difference less than 5%. This difference was greater at a higher electric current, probably due to the increased solution temperature. However, effect of pH on the dissolution of the aluminum was negligible. The result of this study suggested that the operating condition of electrocoagulation system could be developed using the Faraday's law when the pollutant concentration is given.

  • PDF

Impedance-based damage monitoring of steel column connection: numerical simulation

  • Ho, Duc-Duy;Ngo, Thanh-Mong;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.339-356
    • /
    • 2014
  • This study has been motivated to evaluate the practicality of numerical simulation of impedance monitoring for damage detection in steel column connection. In order to achieve the objective, the following approaches are implemented. Firstly, the theory of electro-mechanical (E/M) impedance responses and impedance-based damage monitoring method are outlined. Secondly, the feasibility of numerical simulation of impedance monitoring is verified for several pre-published experimental examples on steel beams, cracked aluminum beams, and aluminum round plates. Undamaged and damaged steel and aluminum beams are simulated to compare to experimental impedance responses. An aluminum round plate with PZT patch in center is simulated to investigate sensitive range of impedance responses. Finally, numerical simulation of the impedance-based damage monitoring is performed for a steel column connection in which connection bolts are damaged. From the numerical simulation test, the applicability of the impedance-based monitoring to the target steel column connection can be evaluated.

Fuel Cell End Plates: A review

  • Kim, Ji-Seok;Park, Jeong-Bin;Kim, Yun-Mi;Ahn, Sung-Hoon;Sun, Hee-Young;Kim, Kyung-Hoon;Song, Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.39-46
    • /
    • 2008
  • The end plates of fuel cell assemblies are used to fasten the inner stacks, reduce the contact pressure, and provide a seal between Membrane-Electrode Assemblies (MEAs). They therefore require sufficient mechanical strength to withstand the tightening pressure, light weight to obtain high energy densities, and stable chemical/electrochemical properties, as well as provide electrical insulation. The design criteria for end plates can be divided into three parts: the material, connecting method, and shape. In the past, end plates were made from metals such as aluminum, titanium, and stainless steel alloys, but due to corrosion problems, thermal losses, and their excessive weight, alternative materials such as plastics have been considered. Composite materials consisting of combinations of two or more materials have also been proposed for end plates to enhance their mechanical strength. Tie-rods have been traditionally used to connect end plates, but since the number of connecting parts has increased, resulting in assembly difficulties, new types of connectors have been contemplated. Ideas such as adding reinforcement or flat plates, or using bands or boxes to replace tie-rods have been proposed. Typical end plates are rectangular or cylindrical solid plates. To minimize the weight and provide a uniform pressure distribution, new concepts such as ribbed-, bomb-, or bow-shaped plates have been considered. Even though end plates were not an issue in fuel cell system designs in the past, they now provide a great challenge for designers. Changes in the materials, connecting methods, and shapes of an end plate allow us to achieve lighter, stronger end plates, resulting in more efficient fuel cell systems.