• 제목/요약/키워드: aluminum carbide

검색결과 75건 처리시간 0.027초

비균질 재료에서의 균열거동평가를 위한 멀티스케일 수치해석 (Multiscale Simulation for a Crack Behavior in Heterogeneous Materials)

  • 누룰 파토니;권오헌
    • 한국안전학회지
    • /
    • 제32권4호
    • /
    • pp.1-6
    • /
    • 2017
  • Functionally Graded Materials (FGM) as advanced heterogeneous composite materials have a higher performance than a conventional composite or bimaterial composite under some severe environments. As a heterogeneous material, FGM is commonly used in spacecraft, defense, nuclear and automotive industries due to its excellent properties. The purposes of this study are to evaluate the stress distribution and crack behaviors by the multiscale simulation. FGM contains two or more than two materials that the composition is structured continuously. Two types of FGM model are suggested, which are created by arbitrary prediction of the volume fraction and the exponential function. Aluminum as the metal matrix constituent and silicon carbide as the ceramic particle constituent are structured gradually by two types and the three point bending test also estimated. Moreover, two kinds of crack location were introduced in order to get the influences of material property distribution on the stress intensity factor. From the results we found that the stress intensity factors are increased in the case from softer to stiffer material, while vice versa.

Vibration and damping behaviors of symmetric layered functional graded sandwich beams

  • Demir, Ersin
    • Structural Engineering and Mechanics
    • /
    • 제62권6호
    • /
    • pp.771-780
    • /
    • 2017
  • In this study, free vibration and damping behaviors of multilayered symmetric sandwich beams and single layered beams made of Functionally Graded Materials were investigated, experimentally and numerically. The beams were composed of Aluminum and Silicon Carbide powders and they were produced by powder metallurgy. Three beam models were used in the experiments. The first model was isotropic, homogeneous beams produced by using different mixing ratios. In the second model, the pure metal layers were taken in the middle of the beam and the weight fraction of the ceramic powder of each layer was increased towards to the surfaces of the beam in the thickness direction. In the third model, the pure metal layers were taken in the surfaces of the beam and the weight fraction of the ceramic powder of each layer was increased towards to middle of the beam. Then the vibration tests were performed. Consequently, the effects of stacking sequence and mixing ratio on the natural frequencies and damping responses of functionally graded beams were discussed from the results obtained. Furthermore, the results obtained from the tests were supported with a finite-element-based commercial program, and it was found to be in harmony.

고 열방사 투명 고분자 합성막 연구 (A Study on Transparent Polymer Composite Films with High Emissivity)

  • 김정환;신동균;서화일;박종운
    • 반도체디스플레이기술학회지
    • /
    • 제12권1호
    • /
    • pp.29-33
    • /
    • 2013
  • We have fabricated transparent polymer composite films with high thermal emissivity, which can be used for heat dissipation of transparent electronics. PMMA (poly(methyl methacrylate)) solution with high transparency and thermal emissivity is mixed with various fillers (carbon nanotubes (CNTs), aluminum nitride (AlN), or silicon carbide (SiC)) with high thermal conductivity. We have achieved the thermal emissivity as high as 0.94 by the addition of CNTs. Compared with the PMMA film on glass, however, the addition of AlN or SiC is shown to rather decrease the thermal emissivity. It is also observed that the thickness of the PMMA film does not affect its thermal emissivity. To avoid any degradation of the thermal conductivity, therefore, the PMMA film thickness is desirable to be $1{\mu}m$. There also exists a tradeoff between the optical transmittance and thermal conductivity on the selection of the amount of fillers.

응답표면법에 의한 알루미늄합금의 가공면 거칠기에 관한 연구 (A Study on the Surface Roughness of Aluminum Alloy by Response Surface Nethod)

  • 구자성;김원일;이윤경;왕덕현;박지호
    • 한국산업융합학회 논문집
    • /
    • 제8권1호
    • /
    • pp.31-36
    • /
    • 2005
  • The purpose of this experimental study is to gain equations for the prediction of surface roughness depending on the three major parameters(the cutting speed, the feed rate and the nose radius). It is the merit of Response Surface Methodology that the test time is reduced to minimum size and accurate analysis can be done. On this study, first, made specimen, Al 5052 BE material which is widely used in school and cut the specimen with coated tungsten carbide tools, by varying the cutting conditions, such as the cutting speed, the feed rate and the nose radius. In conclusion, the surface roughness was most greatly influenced by the feed rate. And Surface Roughness equation gained by experiment is as followed $$R=58.2\;v^{-0.22}f^{1.7}r^{-0.66}$$.

  • PDF

열간 압축법으로 제조된 Cr2AlC 화합물의 900-1200℃, 50시간 동안의 대기중 산화 (Oxidation of Hot Pressed Cr2AlC Compounds at 900-1200℃ for Up to 50 Hours in Air)

  • 이동복
    • 한국표면공학회지
    • /
    • 제44권4호
    • /
    • pp.125-130
    • /
    • 2011
  • $Cr_2AlC$ compounds were synthesized by hot pressing, and oxidized between 900 and $1200^{\circ}C$ in air for up to 50 hours. They oxidized to a thin $Al_2O_3$ layer containing a small amount of $Cr_2O_3$with the liberation of carbon as CO or $CO_2$ gases. The consumption of Al to form the $Al_2O_3$ layer led to the depletion of Al and enrichment of Cr just below the $Al_2O_3$ layer, resulting in the formation of an underlying $Cr_7C_3$ layer. As the oxidation temperature and time increased, the $Cr_7C_3$ oxide layer and the underlying $Cr_7C_3$ layer thickened. The oxidation resistance of $Cr_2AlC$ was generally good due to the formation of the $Al_2O_3$ barrier layer.

보론과 카본 조제를 사용한 AlN-SiC-TiB2계의 고온가압 및 Spark Plasma Sintering (Hot Pressing and Spark Plasma Sintering of AlN-SiC-TiB2 Systems using Boron and Carbon Additives)

  • 이세훈;김해두
    • 한국세라믹학회지
    • /
    • 제46권5호
    • /
    • pp.467-471
    • /
    • 2009
  • Effects of boron and carbon on the densification and thermal decomposition of an AlN-SiC-$TiB_2$ system were investigated. $SiO_2$ was mostly removed by the addition of carbon, while $Al_2O_3$ formed $Al_4O_4C$ and promoted the densification of the systems above $1850^{\circ}C$. Rather porous specimens were obtained without the additives after hot pressing at $2100^{\circ}C$, while densification was mostly completed at $2000^{\circ}C$ by using the additives. The sintering temperature decreased further to $1950^{\circ}C$ by applying spark plasma sintering. The additives promoted the shrinkage of AlN by forming a liquid phase which was originated from the carbo- and boro-thermal reduction of $Al_2O_3$ and AlN.

열 증착법으로 제조된 CNT/Al/Cu 복합 파이버의 전기적 특성 (Electrical Properties of CNT/Al/Cu Composite Fiber Deposited by Thermal Vacuum Evaporation)

  • 김종석;신백균
    • 한국전기전자재료학회논문지
    • /
    • 제34권2호
    • /
    • pp.105-109
    • /
    • 2021
  • CNT fiber has been in the spotlight as a conductor, but the conductivity of CNT fibers do not match that of CNT. This study reveals that the conductivity of CNT fiber can be improved by depositing Al/Cu through vacuum evaporation. Cu is commonly used for deposition on CNT fibers. But low bonding strength of the interface between CNT and Cu could be a disadvantage. To overcome this, Al was deposited on the CNT fiber for forming aluminum carbide islands to increase the interfacial bonding strength. The conductivity characteristics were improved as the deposition time increased. The resistance was measured as a function of temperature, demonstrating that the temperature coefficient of resistance (TCR) is improved to be 241 ppm/℃ in comparison with that of as-received CNT fibers at -1,251 ppm/℃, when the CNT fibers are deposited with Al and Cu, respectively, for 90s and for 540s.

태양광(太陽光) 산업(産業)에서 발생(發生)하는 Si/SiC 혼합물(混合物)의 소결특성(燒結特性) 연구(硏究) (Sintering Characteristics of Si/SiC Mixtures from Si Waste of Solar Cell Industry)

  • 권우택;김수룡;김영희;이윤주;김종일;이현재;오세천
    • 자원리싸이클링
    • /
    • 제22권3호
    • /
    • pp.28-35
    • /
    • 2013
  • 태양광 산업에서 폐기물로 발생하는 Si/SiC 혼합슬러지를 재활용하는 것은 환경과 경제적인 측면에서 중요하다. 이러한 재활용을 위해서 Si/SiC 혼합물의 소결특성을 분석하는 것이 필요하다. 본 연구에서는 SiC함량에 따른 소결특성을 살펴보기 위해서 공기분급기를 이용하여 Si/SiC 혼합물에서 SiC 함량을 변화시켰다. SiC 함량이 변화된 Si/SiC 혼합물에 카본블랙, 점토 및 수산화알루미늄을 첨가하여 소결하였다. Si/SiC 혼합물의 특성분석 및 첨가제 변화에 따른 Si/SiC 혼합물 소결체의 특성변화를 SEM, XRD, 입도분석 및 겉보기 밀도변화를 측정하여 분석하였다. SEM 및 입도분석결과, SiC 95% 시료의 경우에는 원시료 및 SiC 75% 시료와 비교하여 1 ${\mu}m$ 크기 이하의 미립입자가 크게 감소하여 공기분급을 통한 미세입자 제거가 SiC 함량 제어에 효과가 있음을 확인할 수 있었다. 수산화알루미늄을 첨가함에 따라서 ${\beta}$-Cristobalite 가 감소하고 mullite 생성량이 증가하였으며, 카본블랙의 첨가가 소결특성 향상에 영향을 주는 것을 확인하였다.

비파괴적 방법에 의한 입자 강화 복합재료의 부피분율 평가: 와전류법 (Nondestructive Determination of Reinforcement Volume Fractions in Particulate Composites : Eddy Current Method)

  • 정현조
    • 비파괴검사학회지
    • /
    • 제18권2호
    • /
    • pp.112-120
    • /
    • 1998
  • 입자 보강 복합재료의 부피분율을 평가하기 위한 와전류 비파괴 방법을 제시하였다. 제안된 방법은 복합재의 미시구조를 설명할 수 있는 이론 모델과 와전류에 의한 전기전도도 측정을 필요로 한다. 측정한 전도도를 이론 예측값과 같게 두면 미지의 입자 부피분율이 계산된다. Mori-Tanaka 방법에 기초한 전도도 해석 모델이 소개되어 있다. 이러한 접근 방법을 SiC 입자 보강 Al 기지 ($SiC_p/Al$) 복합재에 적용하였다. 이방법으로 보강재의 부피분율을 비교적 정확하게 결정할 수 있었다. 금속간 화합물이 부피분율 평가에 미치는 영향을 논하였으며, 또한 금속간 화합물의 전도도와 기하학적 성질이 보강 입자와 같은 경우, 이 두 상의 총 부피분율을 결정할 수 있는 방법을 제시하였다.

  • PDF

용융 Zn 합금에서 Fe합금의 PTA 오버레이 용접 금속간 상의 형성과 진행 (Formation and Progression of Intermetallic phase on Iron Base Alloy PTA weld overlay in Molten Zn Alloys)

  • ;백응률
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.95-95
    • /
    • 2009
  • Zinc coatings provide the most effective and economical way of protecting steel against corrosion. There are three types of galvanizing lines typically used in production line in galvanizing industries,Galvanize (GI) coating (Zn-0.1-0.3%Al), Galfan coating (Zn-5%Al), Galvalume(GL) coating (45%Zn-Al). In continuous Galvanizing lines, the immersed bath hardware (e.g. bearings, sink, stabilizer, and corrector rolls, and also support roll arms and snout tip) are subjected to corrosion and wear failure. Understanding the reaction of these materials with the molten Zn alloy is becomes scientific and commercial interest. To investigate the reaction with molten Zn alloys, static immersion test performed for 4, 8, 16, and 24 Hr. Two different baths used for the static immersion, which are molten Zn and molten Zn-55%Al. Microstructures characterization of each of the materials and intermetallic layer formed in the reaction zone was performed using optical microscope, SEM and EDS. The thickness of the reaction layer is examined using image analysis to determine the kinetics of the reaction. The phase dominated by two distinct phase which are eutectic carbide and matrix. The morphology of the intermetallic phase formed by molten Zn is discrete phase showing high dissolution of the material, and the intermetallic phase formed by Zn-55wt%Al is continuous. Aluminum reacts readily with the materials compare to Zinc, forming iron aluminide intermetallic layer ($Fe_2Al_5$) at the interface and leaving zinc behind.

  • PDF