• Title/Summary/Keyword: aluminum can

Search Result 1,446, Processing Time 0.026 seconds

Fabrication of nano-structured PMMA substrates for the improvement of the optical transmittance (반구형 나노 패턴의 크기에 따른 PMMA기판의 광특성 평가)

  • Park, Y.M.;Shin, H.G.;Kim, B.H.;Seo, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.217-220
    • /
    • 2009
  • This paper presents fabrication method of nano-structured PMMA substrates as well as evaluations of their optical transmittance. For anti-reflective surface, surface coating method had been conventionally used. However, it requires high cost, complicated process and post-processing times. In this study, we suggested the fabrication method of anti-reflective surface by the hot embossing process. Using the nano patterned master fabricated by anodic aluminum oxidation process. Anodic aluminum oxide(AAO) is widely used as templates or a molds for various applications such as carbon nano tube (CNT), nano rod and nano dots. Anodic aluminum oxidation process provides highly ordered regular nano-structures on the large area, while conventional pattering methods such as E-beam and FIB can fabricate arbitrary nano-structures on small area. We fabricated a porous alumina hole array with various inter-pore distance and pore diameter. In order to replicate nano-structures using alumina nano hole array patterns, we have carried out hot-embossing process with PMMA substrates. Finally the nano-structured PMMA substrates were fabricated and their optical transmittances were measured in order to evaluate the charateristivs of anti-reflection. Anti-reflective structure can be applied to various displays and automobile components.

  • PDF

Study on Structural Analysis of DCB Specimen Bonded with Aluminum Foam Composite (알루미늄 폼 복합재료로 된 접합된 DCB 시험편의 구조 해석에 관한 연구)

  • Choi, Hae-Kyu;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1488-1495
    • /
    • 2012
  • In this study, the fracture behaviour of DCB(double cantilever beam) specimen with aluminum foam composite materials is analyzed by simulation. The used model is 3D configuration on the basis of British industrial standard and ISO international standard. As the thickness of model is increased, the length of propagated crack is increased and the load becomes higher. The analysis result obtained by this study can be applied at the practical composite structure bonded with aluminum foam materials. The fracture behaviour is analyzed and the mechanical property can be understood.

Characteristic Investigation on Super-Hydrophobicity of PTFE Thin Films Deposited on Al Substrates Using RF-Magnetron Sputtering Method (고주파 마그네트론 스퍼터링 방법을 사용하여 Al 기판위에 증착된 PTFE 박막의 초-발수에 관한 특성 연구)

  • Bae, Kang;Kim, Hwa-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.64-69
    • /
    • 2011
  • Super-hydrophobic properties have been achieved on the rf-sputtered polytetrafluoroethylene(PTFE) films deposited on etched aluminum surfaces. The microstructural evolution created after etching has been investigated by FESEM. The water contact angle over $160^{\circ}$ can be achieved on the rf-sputtered ultra-tihn PTFE film less than 10 nm coated on aluminum surface etched with 7 wt.%, 12.5 wt.%, and 15 wt.% HCl concentration for 12 min. XPS analysis have revealed the presence of a large quantity of $-CF_3$ and $-CF_2$ groups in the rf-sputtered PTFE films that effectively can reduce the surface energy of etched aluminum. The presence of patterned morphology along with the low surface energy at the rf-sputtered PTFE coating makes the aluminum surface with high super-hydrophobic property.

Press Forming of Extruded Aluminum Profile for Automotive Parts (자동차 부품용 알루미늄 압출재의 프레스 성형기술)

  • Choi Young;Park Joon-Hong;Kang Myun-Gyu;Oh Kae-Hee;Park Sang-Woo;Yeo Hong-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.51-58
    • /
    • 2006
  • The necessities for heightening fuel efficiency as well as lightweight design, lead to an increase of the use of aluminum alloys in the automobile industry. Extruded aluminum profile channels are used widely for the design of frame parts as lightweight assemblies, especially if a high stiffness is needed. While many applications can be realized with forming of hollow square-sectioned extruded profiles such as a stretch bending and a hydro-forming, some applications demand the use of a press bending which can be hardly found in the previous study. In this study, by introducing the use of a press bending into car sub-frames, the demands for higher accuracy as well as higher flexible method than the conventional methods will be satisfied. With respect to the design of sub-frames, the process planning was performed from the shape of a sub-frame product. The designed processes were analyzed by the commercial FEM code, DEFORM-3D. Forming dies for the each process were designed and prototypes of sub-frames were manufactured by the verified farming process. In addition, some of the important features of design parameters in the press bending were reviewed.

Comparative Study of Corrosion Inhibition in Acidic and Neutral Chloride Media by Some Amino Acids (염산과 NaCl 수용액에서 알루미늄의 부식에 미치는 아미노산의 부식억제효과)

  • Yoon, Jonghwa;Kim, Younkyoo
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.5
    • /
    • pp.364-371
    • /
    • 2018
  • Inhibition effects of alanine (Ala), histidine (His), methionine (Met) on the corrosion of aluminum were investigated in deaerated 0.5 M HCl and NaCl solution. In HCl solution the inhibition efficiency for the aluminum corrosion depended on the cathodic inhibition, and the inhibition efficiency was increased in the order of Met$10^{-4\;}M$ the adsorption process can be explained by Langmuir isotherm, however, in the case of higher concentration by Temkin logarithmic isotherm due to the interaction between the adsorbed molecules.

Study on Fabrication of Highly Ordered Nano Master by Using Anodic Aluminum Oxidation (AAO를 이용한 나노 마스터 제작에 관한 연구)

  • Kwon, J.T.;Shin, H.G.;Seo, Y.H.;Kim, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.162-165
    • /
    • 2007
  • AAO(Anodic Aluminum Oxidation) method has been known that it is practically useful for the fabrication of nano-structures and makes it possible to fabricate the highly ordered nano masters on large surface and even on the 2.5 or 3D surface at low cost comparing to the expensive e-beam lithography or the conventional silicon processing. In this study, by using the multi-step anodizing and etching processes, highly ordered nano patterned master with concave shapes was fabricated. By varying the processing parameters, such as initial matter and chemical conditions; electrical and thermal conditions; time scheduling; and so on, the size and the pitch of the nano pattern can be controlled. Consequently, various alumina/aluminum nano structures can be easily available in any size and shape by optimized anodic oxidation in various aqueous acids. In order to replicate nano patterned master, the resulting good filled uniform nano molded structure through electro-forming process shows the validity of the fabricated nano pattern masters.

  • PDF

Study of Low Temperature Solution-Processed Al2O3 Gate Insulator by DUV and Thermal Hybrid Treatment (DUV와 열의 하이브리드 저온 용액공정에 의해 형성된 Al2O3 게이트 절연막 연구)

  • Jang, Hyun Gyu;Kim, Won Keun;Oh, Min Suk;Kwon, Soon-Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.286-290
    • /
    • 2020
  • The formation of inorganic thin films in low-temperature solution processes is necessary for a wide range of commercial applications of organic electronic devices. Aluminum oxide thin films can be utilized as barrier films that prevent the deterioration of an electronic device due to moisture and oxygen in the air. In addition, they can be used as the gate insulating layers of a thin film transistor. In this study, aluminum oxide thin film were formed using two methods simultaneously, a thermal process and the DUV process, and the properties of the thin films were compared. The result of converting aluminum nitrate hydrate to aluminum oxide through a hybrid process using a thermal treatment and DUV was confirmed by XPS measurements. A film-based a-IGZO TFT was fabricated using the formed inorganic thin film as a gate insulating film to confirm its properties.

Fabrication of Polymer Master with High Aspect Ratio by Using Anodic Aluminum Oxidation (양극산화공정을 이용한 고세장비의 폴리머 마스터 제작)

  • Kwon, J.T.;Shin, H.G.;Seo, Y.H.;Kim, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.285-287
    • /
    • 2008
  • AAO(Anodic Aluminum Oxidation) method has been known that it is practically useful for the fabrication of nano-structures and makes it possible to fabricate the highly ordered nano masters on large surface and even on the 2.5 or 3D surface at low cost comparing to the expensive e-beam lithography or the conventional silicon processing. In this study, by using the multi-step anodizing and etching processes, highly ordered nano patterned master with concave shapes was fabricated. By varying the processing parameters, such as initial matter and chemical conditions; electrical and thermal conditions; time scheduling; and so on, the size and the pitch of the nano pattern can be controlled. Consequently, various alumina/aluminum nano structures can be easily available in any size and shape by optimized anodic oxidation in various aqueous acids. In order to replicate nano patterned master, the resulting good filled uniform nano molded structure through electro-forming process shows the validity of the fabricated nano pattern masters.

  • PDF

Analysis of Sealing Effectiveness Based on Spring Stiffness of a Spring-Energized Static Seal (스프링 보강 정적 실의 스프링 강성에 따른 기밀 성능 해석)

  • Jang, Soo Yeon;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.307-312
    • /
    • 2018
  • Unlike a typical static seals, spring-energized static seals exhibit improvement in leak-tightness by reinforcing the spring inside the aluminum lining. Thus, spring-energized static seals are widely used in various industrial fields, such as aerospace, semiconductors, and petrochemical industries. The primary objective of this study is to develop design guidelines for spring-energized static seals in a wide range of temperatures, including that of cryogenic environments, by analyzing the required performance and influence of design variables through simulations. There are various parameters that can be controlled to design a leak-tight seal. In this study, the finite element analysis (FEA) is performed by controlling the parameters related to the spring and the thickness of the aluminum lining, and the result of the leakage between the seal and the casing is confirmed. Considering the influence of each parameters, all of them are found to be important. However, it is observed that the spring-related variables are more important than the aluminum lining or other variables when complexity is considered. We can identify the threshold value of spring stiffness that changes leak-tight performance of the seal by performing FEA. Simulation results, under the conditions that are considered in this study, show that spring stiffness should be at least 3.6 N/m to maintain leak-tightness caused by the sufficient contact force between the aluminum lining and the upper and lower casings.

Production of Alumina with High Purity (고순도 알루미나의 제조)

  • Song, Si Jeong;Lee, Man Seung
    • Resources Recycling
    • /
    • v.28 no.1
    • /
    • pp.15-22
    • /
    • 2019
  • There are three hydrometallurgical methods by which pure alumina can be prepared, such as hydrolysis of aluminum alkoxides, thermal decomposition of ammonium alum and thermal cracking of ammonium aluminum carbonate (AACH). The effect of solution pH and temperature and the nature of the impurities on the phase transition and the purity of the alumina thus produced was investigated. Hydrolysis of aluminum alkoxides and thermal decomposition of ammonium alum produce ${\alpha}$ and ${\gamma}$ alumina, while only ${\alpha}$ alumina can be produced by thermal cracking of AACH.