• Title/Summary/Keyword: alumina content

Search Result 224, Processing Time 0.026 seconds

Tribological Behaviors Against Counterpart Materials of Ti-Si-N Coating Layers Prepared by a Hybrid Coating System (하이브리드 코팅시스템에 의해 제조된 Ti-Si-N 코팅막의 상대재에 대한 마모거동 연구)

  • 박옥남;박종현;윤석영;권식철;김광호
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.116-121
    • /
    • 2003
  • Ti-Si-N coating layers were deposited onto WC-Co substrates by a hybrid system of arc ion plating (AIP) and sputtering techniques. The tribological behaviors of Ti-Si-N coating layers with various Si contents were investigated by the dry sliding wear experiments, which were conducted at three different sliding speeds, 0.1, 0.3, 0.5 m/s, against the steel and alumina balls. In the case of steel ball, the average friction coefficient slightly decreased with increasing the sliding speed regardless of Si content due to adhesive wear behavior between coating layer and steel ball. At constant sliding speed, the average friction coefficient decreased with increase of Si content. On the contrary, in the case of alumina ball, the average friction coefficient increased with increasing the sliding speed regardless of Si content, indicating that the abrasive wear behavior was more dominant when the coating layers slide against alumina ball. Through these experimental results, it was found that the tribological behaviors of Ti-Si-N coating layers were effected by factors such as Si content, sliding speed, and kinds of counterpart materials rather than the hardness of coating layer.

Nitridation Behavior of Kaolin with Reduced Alumina Content Obtained by Acid Treatment (산처리에 의하여 알루미나 함량을 줄인 카올린의 질화거동)

  • 배원태;정원도;조철구
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.5
    • /
    • pp.347-356
    • /
    • 1992
  • Various kaolin samples with different alumina content were prepared from calcined admixture of kaolin and ammonium sulfate by varying the treatment time in sulfuric acid. Samples were nitridated under N2 or N2-H2 atmosphere with changing the amount of added carbon, the reaction time and temperature. As the alumina content lowered, the size of kaolin particles decreased and the specific surface area increased. XRD analysis indicated that ${\alpha}$-quartz remained by decomposition of halloysite and meta-halloysite. Experimental results of nitridation behavior are summerized as follows; 1) Nitridation under N2 atmosphere. With the increase of C/SiO2 ratio and with the decrease of Al2O3 content, disappearance of XRD pattern peaks of mullite, ${\alpha}$-quartz and ${\alpha}$-Al2O3 were accelerated at 1300$^{\circ}C$. SiC was the main phase in the reaction product of acid-treated kaolin samples nitridated at 1300$^{\circ}C$ for 10 hours regardless of C/SiO2 ratio. But the XRD peak intensities of ${\beta}$-Si3N4, ${\beta}$-sialon and SiC did not show much difference when untreated raw kaolin was fired at the same condition. When the ratio of C/SiO2 was 3.5, ${\beta}$-sialon and ${\beta}$-Si3N4 existed in the reaction product of about 22% alumina containing kaolin sample fired at 1350$^{\circ}C$ for 7 hours. Only ${\beta}$-sialon existed in the same sample fired at 1400$^{\circ}C$ for 10 hours. ${\beta}$-sialon was obtained from all of the acid-treated kaolin samples fired at 1400$^{\circ}C$ for 40 hours, but AlN and SiC remained in the untreated kaolin sample. Z value of the ${\beta}$-sialon obtained from the 22% alumina containing kaolin sample fired at 1400$^{\circ}C$ for 40 hours was about 1.3(XRD) and 1.5(EDS). 2) Nitridation under 80N2+2OH2 mixed gas atmosphere with the C/SiO2 ratio of 1 Mullite was not found, but ${\alpha}$-Si3N4, and ${\beta}$-sialon were present in the reaction product of about 22% alumina containing kaolin sample fired at 1300$^{\circ}C$ for 10 hours. When untreated kaolin sample was nitridated at the same condition, mullite remained. AlN and SiC were not found in the reaction product of about 22% alumina containing kaolin sample fired at 1350$^{\circ}C$ for 5 hours. On the other hand, AlN and SiC remained in the product of untreated kaolin fired at the same condition.

  • PDF

THE CONSTRUCTION METHOD OF IN-CERAM SPINELL CROWN AND ITS CLINICAL APPLICATION (In-Ceram Spinell Crown의 제작법과 임상적 응용)

  • Jo, Byung-Woan
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.6 no.1
    • /
    • pp.18-31
    • /
    • 1997
  • By the concerns of esthetic restoration were increased recently. many all ceramic crowns were developed. But they except In-Ceram Alumina were used only single crown. In-Ceram Alumina, developed by Dr. Sadon, was revealed to have high flexural Strength(450MPa). So it could be used not only anterior bridges but also posterior bridges. But In-Ceram Alumina was seen to be opaque, a little green color in transillumination light by high content of alumina oxide(85%). So new all ceramics with high strength and high translucence were needed. Spinell($MgAl_2O_3$) have a high melting point, high flexural strength, low heat conductivity, high light conductivity. In-Ceram Spinell offers glasslike light transmission by using the spinell cores instead of the alumina cores. And they have a high translucency like to natural tooth, an excellent margin integrity and a high strength(350MPa). The purposes of this study are 1) to know about the construction method of In-Ceram Spinell System, 2) to investigate the its clinical possibiliy through patients and literature reviews.

  • PDF

A Study on the Superfinishing of Ball Bearing Race (볼베어링 레이스면의 슈퍼피니싱에 관한 연구)

  • 이재우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.879-882
    • /
    • 1997
  • This paper aims to clarify the effect of the sol-gel sintered alumina grain and the PbO content of binder on the performance of the vitrified alumina stone for superfinishing the ball bearing race with the vitrified alumina superfinishing stone. The main conclusions obtained were as follows. The stone that contain 8- 11% PbO in binder shows the highest grinding ratio, and increasing or decreasing the PbO contents causes lower grinding ratio. When superfinishing with the stone using the 45% fused alumina and 55% sol-gel sintered alumina grain, the grinding ratio becomes the best, the other ratio of grain contents shows lower performance. With increasing the bending strength of stone, the grinding ratio becomes larger. The roughness of the finished surface is the lowest in case of using the stone of the above mentioned conditions.

  • PDF

Studies on Alumina Cement from Alunite (I) (Synthesis of monocalcium aluminate) (명반석을 이용한 알루미나 시멘트의 제조(I) (Monocalcium Aluminate의 합성))

  • 한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.15 no.4
    • /
    • pp.199-204
    • /
    • 1978
  • In the present investigation, refined alumina obtained from alunite locally available was used as a aluminous source to synthesize monocalcium aluminate $(CA)_3$ the major mineral constituent of alumina cement. The influence of $SiO_2$ and $Fe_2O_3$ contents on the formation of monocalcium aluminate was studied by X-ray diffraction analysis mainly. About 0.8-1.0 of $Al_2O_3/C_3O$ mol ratio and less than 4 percent of $SiO_2$ were desirable for the effective formation of CA. The small amount of alkali and sulphur contents contained in refined alumina from alunite as the impurities were affected to form $C_4A_3S$ and $C_3S_2$, disadvantageous compounds for the alumina cement, therefore the impurities should be restricted in minimum content as possible.

  • PDF

Experimental Investigation on Dielectric and Thermal Characteristics of Nanosized Alumina Filler Added Polyimide Enamel

  • Sugumaran, C. Pugazhendhi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.978-983
    • /
    • 2014
  • The polymer nano composite possess good priority recently for engineering applications. Especially the electrical insulating materials attract the high performance of nano composites. In this work the ballmill synthesiation process of nano sized Alumina ($Al_2O_3$), the preparation of new nano composite material with an content of enamel and synthesized Alumina as 1wt%, 3wt% and 5wt%. Experimental investigation has been carried out for the prepared nano composites materials with respect to dielectric parameter measurements such as dielectric loss (tan ${\delta}$), dielectric constant (${\varepsilon}$), dielectric strength under various temperature. The partial discharge level also measured for all the samples and the PD inception voltage is also observed and compared. Weight loss of the material has been analyzed through TGA. It has been experimentally proved that 3wt% of Alumina nano filler added enamel has significant improvement in the dielectric and thermal properties.

Effect of Polymer Content on Synthesis Process and Microstructure of Alumina-Zirconia Composite (알루미나-지르코니아 복합체의 제조공정 및 미세구조에 미치는 폴리머 첨가의 영향)

  • 이상진;권명도;이충효;조경식
    • Journal of Powder Materials
    • /
    • v.10 no.5
    • /
    • pp.310-317
    • /
    • 2003
  • Two-component ceramic (alumina-zirconia) composites were fabricated by a soft-solution process in which polyethylene glycol (PEG) was used as a polymeric carrier. Metal salts and PEG were dissolved in ethyl alcohol without any precipitation in 1:1 volume ratio of alumina and zirconia. In the non-aqueous system, the flammable solvent made explosive, exothermic reaction during drying process. The reaction resulted in formation of volume expanded, porous precursor powders by a vigorous decomposition of organic components in the precursor sol. The PEG content affected the grain size of sintered composites as well as the morphology of precursor powders. The difference of microstructure in sintered composite was attribute to the solubility and homogeneity of metal cations in precursor sol. At the optimum amount of the PEG polymer, the metal ions were dispersed effectively in solution and a homogeneous polymeric network was formed. It made less agglomerated particles in the precursor sol and affected on uniform grain size in sintered composite.

Electrical AC Insulation Breakdown Characteristics of Various Epoxy / Heterogeneous Inorganic Mixed Composite (여러 종류의 에폭시/이종무기물 혼합 콤포지트의 전기적 교류 절연파괴 특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1463-1470
    • /
    • 2018
  • In this study, 20 types of samples were prepared by mixing different kinds of inorganic materials to develop insulation materials for epoxy - based GIS substation equipment used under high voltage environmentally friendly insulation gas. One of the electrical characteristics, AC insulation breakdown experiment was performed. As mixing ratio of mixed heterogeneous inorganic materials, the dielectric breakdown strength was increased with increasing filler ratio of micro silica, micro silica : micro Alumina, 1:9, 3:7, 5:5, 7:3, 9:1, and decreased as the filling amount of micro alumina increased. The AC insulation breakdown characteristics were the best when the composition ratio was 9:1. The higher the content of silica, the better the interfacial properties, and the larger the alumina content ratio, the worse the interfacial properties.

Fabrication of Porous Alumina Ceramics Using Hollow Microspheres as the Pore-forming Agent

  • Nie, Zhengwei;Lin, Yuyi
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.368-373
    • /
    • 2015
  • Porous alumina ceramics with two different pore sizes were fabricated using hollow microspheres as the pore-forming agent. The relative density, total porosity, and microstructure of the obtained alumina ceramics were studied. It was found that the total porosity of sintered samples with different amounts of hollow microsphere content, from 2.0 to 4.0 wt%, was 69.3-75.6%. The interconnected and spherical cell morphology was obtained with 3.0 wt% hollow microsphere content. The resulting ceramics consist of a hierarchical structure with large-sized cells, and small-sized pores in the cell walls. Moreover, the compressive strength of the sintered samples varied from 8.3-11.5 MPa, corresponding to hollow microsphere contents of 2.0-4.0 wt%.

The Effect of MnO2 Content on the Permeability and Electrical Resistance of Porous Alumina-Based Ceramics

  • Kim, Jae;Ha, Jang-Hoon;Lee, Jongman;Song, In-Hyuck
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.331-339
    • /
    • 2017
  • Porous alumina-based ceramics are of special interest due to their outstanding mechanical properties and their thermal and chemical stability. Nevertheless, the high electrical resistance of alumina-based ceramics, due to the generation of static electricity, leads to difficulty in applying a vacuum chuck in the semi-conductor process. Therefore, development of alumina-based ceramics for applications with vacuum chucks aims to have primary properties of low electrical resistance and high air permeability. In this study, we tailored the electrical resistance of porous alumina-based ceramics by adjusting the amount of $MnO_2$ (with $TiO_2$ fixed at an amount of 2 wt%) and by using coarse alumina powder for high air permeability. The characteristics of the specimens were studied using scanning electron microscopy, mercury porosimeter, capillary flow porosimetry, universal testing machine, X-ray diffraction and high-resistance meter.