• Title/Summary/Keyword: alternative promoter

Search Result 65, Processing Time 0.02 seconds

Biological Function and Structure of Transposable Elements (이동성 유전인자의 구조 및 생물학적 기능)

  • Kim, So-Won;Kim, Woo Ryung;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.29 no.9
    • /
    • pp.1047-1054
    • /
    • 2019
  • Transposable elements (TEs) occupy approximately 45% of the human genome and can enter functional genes randomly. During evolutionary radiation, multiple copies of TEs are produced by duplication events. Those elements contribute to biodiversity and phylogenomics. Most of them are controlled by epigenetic regulation, such as methylation or acetylation. Every species contains their own specific mobile elements, and they are divided into DNA transposons and retrotransposons. Retrotransposons can be divided by the presence of a long terminal repeat (LTR). They show various biological functions, such as promoter, enhancer, exonization, rearrangement, and alternative splicing. Also, they are strongly implicated to genomic instability, causing various diseases. Therefore, they could be used as biomarkers for the diagnosis and prognosis of diseases such as cancers. Recently, it was found that TEs could produce miRNAs, which play roles in gene inhibition through mRNA cleavage or translational repression, binding seed regions of target genes. Studies of TE-derived miRNAs offer a potential for the expression of functional genes. Comparative analyses of different types of miRNAs in various species and tissues could be of interest in the fields of evolution and phylogeny. Those events allow us to understand the importance of TEs in relation to biological roles and various diseases.

Ru-based Activated Carbon-MgO Mixed Catalyst for Depolymerization of Alginic Acid (루테늄 담지 활성탄-마그네시아 혼합 촉매 상에서 알긴산의 저분자화 연구)

  • Yang, Seungdo;Kim, Hyungjoo;Park, Jae Hyun;Kim, Do Heui
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.232-237
    • /
    • 2022
  • Biorefineries, in which renewable resources are utilized, are an eco-friendly alternative based on biomass feedstocks. Alginic acid, a major component of brown algae, which is a type of marine biomass, is widely used in various industries and can be converted into value-added chemicals such as sugars, sugar alcohols, furans, and organic acids via catalytic hydrothermal decomposition under certain conditions. In this study, ruthenium-supported activated carbon and magnesium oxide were mixed and applied to the depolymerization of alginic acid in a batch reactor. The addition of magnesium oxide as a basic promoter had a strong influence on product distribution. In this heterogeneous catalytic system, the separation and purification processes are also simplified. After the reaction, low molecular weight alcohols and organic acids with 5 or fewer carbons were produced. Specifically, under the optimal reaction conditions of 30 mL of 1 wt% alginic acid aqueous solution, 100 mg of ruthenium-supported activated carbon, 100 mg of magnesium oxide, 210 ℃ of reaction temperature, and 1 h of reaction time, total carbon yields of 29.8% for alcohols and 43.8% for a liquid product were obtained. Hence, it is suggested that this catalytic system results in the enhanced hydrogenolysis of alginic acid to value-added chemicals.

Effects of Single or Mixed Supplements of Plant Extract, Fermented Medicinal Plants and Lactobacillus on Growth Performance in Broilers (식물 추출물, 한방 발효물, 유산균의 단독 및 혼합 첨가 급여가 육계 생산성에 미치는 영향)

  • Kim, D.W.;Kim, S.H.;Yu, D.J.;Kang, G.H.;Kim, J.H.;Kang, H.G.;Jang, B.G.;Na, J.C.;Suh, O.S.;Jang, I.S.;Lee, K.H.
    • Korean Journal of Poultry Science
    • /
    • v.34 no.3
    • /
    • pp.187-196
    • /
    • 2007
  • This experiment was conducted to investigate the effect of dietary single or mixed supplementation of plant extract, fermented medicinal plants and Lactobacillus on performance, nutrient availability, blood characteristics, cecal microflora and intestinal digestive enzymes activity in broiler chickens and to prove the possibility of plant derived compounds and Lactobacillus as an antibiotic growth promoter alternative. A total of eight hundred forty, 1-d-old male broiler chicks (Ross strain) were randomly divided into 7 groups with 4 replicates of 30 birds each. The treatments were NC (antibiotic-free diet), PC (basal diet with 0.05% antibiotics and 0.03% anticoccidials), PE (basal diet with 0.1% plant extract), FMP (basal diet with 0.1% fermented medicinal plants), LB (basal diet with 0.1% probiotics), PE+LB (basal diet with 0.1% plant extract and 0.1% probiotics) and FMP+LB (basal diet with 0.1% fermented medicinal plants and 0.1% probiotics). The final body weight, body weight gain and feed conversion rate in all treated groups tended to be improved or significantly improved as compared to those of NC (P<0.05). PE was significantly high in the final body weight, body weight gain of all treated groups (P<0.05). But the growth performance was significantly lower in all treated groups except PE than PC (P<0.05). No synergic effect in growth performance was found when plant extracts and Lactobacillus were mixed and fed to broilers. The ratio of albumin to globulin was significantly lower in all groups than NC (P<0.05). And the stress indicator (lymphocyte/heterophil ratio) of NC was significantly reduced than other treatments (P<0.05). No significant differences were observed on the numbers of cecal microbes and Lactobacillus. The number of cecal E. coli and Salmonella in FMP and LB were significantly reduced (P<0.05). The activity of intestinal digestive enzymes except to sucrase of treated groups significantly decreased compare to those of controls (P<0.05). These results suggest the possibility that plant extracts and Lactobacillus could be used as the alternative of antibiotic growth promoters by improving the performance of broiler chicks.

독창적 아이디어에서 창조적 혁신까지 : 인공씨감자 기술혁신 성공사례 분석

  • 현재호
    • Proceedings of the Technology Innovation Conference
    • /
    • 1997.07a
    • /
    • pp.222-223
    • /
    • 1997
  • By analyzing the successful innovation case of potato microtuber mass production technology, a representative case of technology-push type creative innovation in an imitation oriented research culture, this paper attempts to figure out conceptual model of creative innovation that is initiated by the public laboratories in catching-up country, Stages of creative innovation can be divided into the internal R&D stage and the external commercialization stage. Success of the internal R&D stage depended on autonomy to secure creative research idea and commitment of individual researchers. Psychological pressure evoked from sportlights of mass media and commitment of sponsor increased the intensity of research efforts of the researcher Recognition of research problem and its significance was intensified by site visits of agricultural fields, and the recognized higher impacts of expected research results and knowledge creation achieved were a fundamental source of self-motivation. In the stage of commercialization stage, various legal, socio-economic, and psychological barriers were confronted. In a catching-up country lacking of experiences of creative innovation, creative innovation process can be regarded as a barrier elimination and cultural revolution process. Among the barriers, psychological refusal of farmers to corn-sized potato seeds was critical, which finally enforced to further researches to enlarge the size of potato seeds. In addition, the researcher has concentrated his research efforts in one specialized research area by getting a series of similar research project funds rather than diversification. It was lucky for him to have a chance to carry out a series of similar researches in one research area during the last 10 years. In getting research funds from government and private companies continuously in one research area, both internal and external promoters played significant roles.

  • PDF

Removal of As(III) in Contaminated Groundwater Using Iron and Manganese Oxide-Coated Materials (철/망간 산화물 피복제를 이용한 오염지하수에서의 As(III)제거)

  • Kim Ju-Yong;Choi Yoon-Hyeong;Kim Kyoung-Woong;Ahn Joo Sung;Kim Dong Wook
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.571-577
    • /
    • 2005
  • Permeable reactive barrier using iron oxide coated sand is one of effective technologies for As(V) contaminated groundwater. However, this method is restricted to As(III), because As(III) species tends to be more weakly bound to adsorbent. In order to overcome the limitation of iron oxide coated sand application to As(III) contaminated groundwater, manganese oxide materials as promoter of As(III) removal were combined to the conventional technology in this study. For combined use of iron oxide coated sand and manganese oxide coated sand, two kinds of removal methods, sequential removal method and simultaneous removal method, were introduced. Both methods showed similar removal efficiency over $85\%$ for 6 hrs. However, the sequential method converted the As contaminated water to acid state (pH 4.5), on the contrary, the simultaneous method maintained neutral state (pH 6.0). Therefore, simultaneous As removal method was ascertained as a suitable treatment technology of As contaminated water. Moreover, for more effective As(III) remediation technique, polypropylene textile which has the characteristics of high surface area, low specific gravity and flexibility was applied as alternative material of sand. The combined use of coated polypropylenes by simultaneous method showed much more prominent and rapid remediation efficiency over $99\%$ after 6 hrs; besides, it has practical advantages in replacement or disposal of adsorbent for simple conventional removal device.