Removal of As(III) in Contaminated Groundwater Using Iron and Manganese Oxide-Coated Materials

철/망간 산화물 피복제를 이용한 오염지하수에서의 As(III)제거

  • Kim Ju-Yong (Arsenic Geoenvironment Laboratory(NRL), Dep. of Environmental Science & Engineering, Gwangju Institute of Science & Technology) ;
  • Choi Yoon-Hyeong (Arsenic Geoenvironment Laboratory(NRL), Dep. of Environmental Science & Engineering, Gwangju Institute of Science & Technology) ;
  • Kim Kyoung-Woong (Arsenic Geoenvironment Laboratory(NRL), Dep. of Environmental Science & Engineering, Gwangju Institute of Science & Technology) ;
  • Ahn Joo Sung (Groungwater and Geothermal Resource Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim Dong Wook (Department of Environmental Engineering, Kongju National University)
  • 김주용 (광주과학기술원 환경공학과 지질환경비소제어 국가지정연구실) ;
  • 최윤형 (광주과학기술원 환경공학과 지질환경비소제어 국가지정연구실) ;
  • 김경웅 (광주과학기술원 환경공학과 지질환경비소제어 국가지정연구실) ;
  • 안주성 (한국지질자원연구원 지하수지열연구부) ;
  • 김동욱 (공주대학교 환경공학과)
  • Published : 2005.12.01

Abstract

Permeable reactive barrier using iron oxide coated sand is one of effective technologies for As(V) contaminated groundwater. However, this method is restricted to As(III), because As(III) species tends to be more weakly bound to adsorbent. In order to overcome the limitation of iron oxide coated sand application to As(III) contaminated groundwater, manganese oxide materials as promoter of As(III) removal were combined to the conventional technology in this study. For combined use of iron oxide coated sand and manganese oxide coated sand, two kinds of removal methods, sequential removal method and simultaneous removal method, were introduced. Both methods showed similar removal efficiency over $85\%$ for 6 hrs. However, the sequential method converted the As contaminated water to acid state (pH 4.5), on the contrary, the simultaneous method maintained neutral state (pH 6.0). Therefore, simultaneous As removal method was ascertained as a suitable treatment technology of As contaminated water. Moreover, for more effective As(III) remediation technique, polypropylene textile which has the characteristics of high surface area, low specific gravity and flexibility was applied as alternative material of sand. The combined use of coated polypropylenes by simultaneous method showed much more prominent and rapid remediation efficiency over $99\%$ after 6 hrs; besides, it has practical advantages in replacement or disposal of adsorbent for simple conventional removal device.

철산화물 피복 모래를 이용한 투수성 반응 벽체는 As(V)로 오염된 지하수의 처리에 매우 효과적인 것으로 알려져 있다 그러나 이 방법은 As(III)에 있어서는 그 제거효과가 제한적인 실정이다. 본 연구에서는 위 방법에 의한 3가 비소제거의 한계를 극복하기 위해서 As(III)를 As(V)로 산화시킬 수 있는 능력을 가진 망간산화물 피복 물질을 비소저감 촉진제로서, 철산화물 피복 물질을 이용한 처리 기법에 함께 적용하였다. 철산화물 피복 모래와 망간산화물 피복 모래를 함께 이용한 비소제거 방법으로서, 순차 제거법과 동시 제거법이 연구되었다. 두 가지 처리 방법 모두 6시간동안 $85\%$ 이상의 높은 비소제거 효율을 보였으며, 처리과정 동안 흡착제 표면의 철이나 망간의 용해에 의한 2차적인 오염도 일어나지 않았다. 그러나, 동시 제거법은 비소 저감 후 처리수의 산성도를 pH 6.0의 중성상태로 유지하는 반면, 순차 제거법은 처리수를 pH 4.5의 산성상태로 변화시키는 작용을 일으켜, 음용수로서의 이용을 위한 오염 지하수의 비소 저감법으로는 동시 제거법이 적합한 것으로 판정되었다. 보다 높은 As(III) 제거 효과를 위해, 망간 및 철산화물을 폴리프로필렌 섬유에 피복시켜 비소제거에 적용하였다. 폴리프로필렌 섬유는 높은 표면적과 낮은 비중의 특성을 가진, 신축성 있는 스폰지와 같은 저렴한 중합체의 일종이다. 이를 이용한 비소 제거법은 피복모래를 이용한 방법보다 월등히 뛰어난 $99\%$ 이상의 높은 비소제거 효율을 나타내었다. 또한, 피복 폴리프로필렌 섬유를 이용한 방법은 비소에 오염된 물의 음용수로의 이용을 위한 간편한 처리기법으로서 적용하기에 좋은 많은 실용적인 장점들을 가지고 있다.

Keywords

References

  1. Berg, M., Tran, H. C, Nguyen, T. C, Pham, H. V, Schertenleib, R. and Giger (2001) Arsenic contamination of groundwater and drinking water in Vietnam. Environ. Sci. Technol., v. 35, p. 2621-2626 https://doi.org/10.1021/es010027y
  2. Christophe T., Lairent C., Dirk B. and Alain C. (2002) Arsenic(HI) Oxidation by Birnessite and Precipitation of Manganese(H) Arsenate. Environ. Sci. Technol., v. 36, p. 493-500 https://doi.org/10.1021/es0109500
  3. Cornell, R. M. and Schwertmann, U. (1996) The Iron Oxides-structure, Properties, Reactions, Occurrence and Uses. VCH Publishers, New York, 573p
  4. Driehaus, W, and Jekel, M. (1998) Determination of As(in) and total inorganic arsenic by on-line pre-treatment in hydride generation atomic absorption spectrometry. J. anal. Chem., v. 343, p. 352-356
  5. Jain, A., Raven, K. P. and Loeppert, R. H., Environ. Sci. Technol. (1999) Arsenite and Arsenate Adsorption on Ferrihydrite: Surface Charge Reduction and Net OH-Release. Stoichiometry, v. 33, p. 1179-1184 https://doi.org/10.1021/es980722e
  6. Khan, A.H., Rasul, W. B., Munir, A. K. M., Habibuddowla, M., Alauddin, M., Newaz, S. S. and Hussam (2000) Application of a simple arsenic removal method for groundwater of Bangladesh. J. Environ. Sci. Health, A, v. 35, p. 1021-1041 https://doi.org/10.1080/10934520009377018
  7. Lee, Y. H., Um, I. and Yoon, J. (2003) Arsenic(HI) Oxidation by Iron(VT) (Ferrate) and Subsequent Removal of Arsenic(V) by Iron(III) Coagulation. Environ. Sci. Technol., v. 37, p. 5750-5756 https://doi.org/10.1021/es034203+
  8. Manning, B. A., Scott, E. F., Benjamin, B. and Donald, L. S. (2002) Arsenic(in) Oxidation and Arsenic(V) Adsorption Reactions on Synthetic Birnesite. Environ. Sci. Technol., v. 36, p. 976-981 https://doi.org/10.1021/es0110170
  9. Nickson, R., McArthur, J., Burgess, W. and Ahmed, K. M. (1998) Arsenic poisoning of Bangladesh groundwater. Nature, v. 395, p. 338 https://doi.org/10.1038/26387
  10. Raven, K. R, Jain, A. and Loeppert, R. H. (1998) Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes. Environ. Sci. Technol., v. 32, p. 344-349 https://doi.org/10.1021/es970421p
  11. Thirunavukkarasu, O. S., Viraraghavan, T. and Subra-manian, K. S. (2003) Arsenic removal from drinking water using iron oxide-coated sand, water, air, and soil pollution, v. 142, p. 95-111 https://doi.org/10.1023/A:1022073721853
  12. Viraraghavan, T., Subramanian, K. and Aruldoss, J. (1999) Arsenic in drinking water-problems and solutions. Water Sci. Technol., v. 40, p. 69-76
  13. Wolfgang, D., Reiner, S. and Martin, J. (1995) Oxidation of arsenate(III) with mnganese oxides in water treatment. War. Res., v. 29, p. 297-305 https://doi.org/10.1016/0043-1354(94)E0089-O
  14. Zouboulis, A., Kydros, K. and Matis, K. (1993) Arsenic (III and V) removal from aqueous solutions. Sci. Technol., v. 28, p. 2449-63