• 제목/요약/키워드: alternating field

검색결과 222건 처리시간 0.035초

Alternating Sunspot Area and Hilbert Transform Analysis

  • Kim, Bang-Yeop;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권4호
    • /
    • pp.261-265
    • /
    • 2011
  • We investigate the sunspot area data spanning from solar cycles 1 (March 1755) to 23 (December 2010) in time domain. For this purpose, we employ the Hilbert transform analysis method, which is used in the field of information theory. One of the most important advantages of this method is that it enables the simultaneous study of associations between the amplitude and the phase in various timescales. In this pilot study, we adopt the alternating sunspot area as a function of time, known as Bracewell transformation. We first calculate the instantaneous amplitude and the instantaneous phase. As a result, we confirm a ~22-year periodic behavior in the instantaneous amplitude. We also find that a behavior of the instantaneous amplitude with longer periodicities than the ~22-year periodicity can also be seen, though it is not as straightforward as the obvious ~22-year periodic behavior revealed by the method currently proposed. In addition to these, we note that the phase difference apparently correlates with the instantaneous amplitude. On the other hand, however, we cannot see any obvious association of the instantaneous frequency and the instantaneous amplitude. We conclude by briefly discussing the current status of development of an algorithm for the solar activity forecast based on the method presented, as this work is a part of that larger project.

$SF_6$가스 내 금속이물 존재시 절연특성 및 전계해석 (The Insulation Characteristics and The Electric Field Anlaysis by Conducting Particle in $SF_6$ Gas)

  • 조국희;이동준;곽희로
    • 조명전기설비학회논문지
    • /
    • 제15권5호
    • /
    • pp.14-19
    • /
    • 2001
  • 전계해석법을 이용하여 나타내었다. 이때 모의한 GIS 챔버내 금속이물의 위치는 전극부착시, 외함부착시 그리고 자유운동시로 하였다. 그 결과 GIS챔버의 절연파괴전계의 경우, 전극에 파티클 부착시가 가장 작게 나타났고, 파티클 자유운동시가 중간, 외함에 파티클 부착시가 가장 작게 나타남을 알 수 있었다. 또한 파티클 위치에 따른 전계해석의 경우 전극에 파티클 부착시가 가장 크게 나타났고, 파티클 자유운동시가 중간, 외함에 파티클 부착시가 가장 작게 나타났다. 이 결과는 국내 GIS의 절연설계에 설제적인 참고자료가 될 것으로 사료된다.

  • PDF

Power Frequency Magnetic Field Reduction Method for Residents in the Vicinity of Overhead Transmission Lines Using Passive Loop

  • Lee, Byeong-Yoon;Myung, Sung-Ho;Cho, Yeun-Gyu;Lee, Dong-Il;Lim, Yun-Seog;Lee, Sang-Yun
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권6호
    • /
    • pp.829-835
    • /
    • 2011
  • A power frequency magnetic field reduction method using passive loop is presented. This method can be used to reduce magnetic fields generated within the restricted area near transmission lines by alternating current overhead transmission lines. A reduction algorithm is described and related equations for magnetic field reduction are explained. The proposed power frequency magnetic field reduction method is applied to a scaled-down transmission line model. The lateral distribution of reduction ratio between magnetic fields before and after passive loop installation is calculated to evaluate magnetic field reduction effects. Calculated results show that the passive loop can be used to cost-effectively reduce power frequency magnetic fields in the vicinity of transmission lines generated by overhead transmission lines, compared with other reduction methods, such as active loop, increase in transmission line height, and power transmission using underground cables.

회전 자계에 의한 철손의 유한요소 해석 (Calculation of Iron Loss under Rotational Magnetic Field Using Finite Element Method)

  • 이학용;박관수;한송엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.147-149
    • /
    • 1994
  • In designing high efficiency electrical machines, calculation of iron loss is very important. And it is reported that in the induction motor and in the T-joint of 3 phase transformer, there occurred rotational magnetic field and much iron loss is generated owing to this field. In this paper, rotational power loss in the electrical machine under rotational magnetic field is discussed. Until now, loss analysis is based on the magnetic properties under alternating field. And with this one dimensional magnetic propertis, it is difficult to express iron loss under rotational field. In this paper, we used two dimensional magnetic property data for the numerical calculation of rotational power loss. We used finite element method for calculation and the analysis model is two dimensional magnetic property measurement system. We used permeability tensor instead of scalar permeability to present two dimensional magnetic properties. And in this case, we cannot uniquely define energy functional because of the asymmetry of the permeability tensor, so Galerkin method is used for finite element analysis.

  • PDF

Effect of Internal Bias Field on Poling Behavior in Mn-Doped Pb(Mg1/3Nb2/3)O3-29 mol%PbTiO3 Single Crystal

  • Lee, Geon-Ju;Kim, Hwang-Pill;Lee, Ho-Yong;Jo, Wook
    • 한국전기전자재료학회논문지
    • /
    • 제34권5호
    • /
    • pp.382-385
    • /
    • 2021
  • Electrical poling is a crucial step to convert ferroelectrics to piezoelectrics. Nevertheless, no systematic investigation on the effect of poling has been reported. Given that the poling involves an alignment of spontaneous polarization, the condition for poling should be different when a material has an internal bias field that influences the domain stability. Here, we present the effect of poling profile on the dielectric and piezoelectric properties in Mn-doped Pb(Mg1/3Nb2/3)O3-29 mol%PbTiO3 single crystal with an internal bias field. We showed that both the dielectric permittivity and the piezoelectric coefficient were further enhanced when the poling procedure ends with a field application along the opposite direction to the internal bias field. We expect that the current finding would give a clue to understanding the true mechanism for the electrical poling.

연속식 용융아연도금 공정에서 단부 과도금 현상을 방지하기 위한 하향 대칭 분류유동 연구 (A Downwardly Deflected Symmetric Jet to prevent Edge Overcoating in Continuous Hot-Dip Galvanizing)

  • 안기장;정명균
    • 대한기계학회논문집B
    • /
    • 제29권10호
    • /
    • pp.1156-1162
    • /
    • 2005
  • In this study, a noble method is proposed to prevent the edge overcoating (EOC) that may develop near the edge of the steel strip in the gas wiping process of continuous hot-dip galvanizing. In our past study (Trans. of the KSME (B), Vol. 27, No. 8, pp. $1105\~1113$), it was found that EOC is caused by the alternating vortices which are generated by the collision of two opposed jets in the region outside the steel strip. When the two opposed jets collide at an angle much less than $180^{o}$, non-alternating stable vortices are established symmetrically outside the steel strip, which lead to nearly uniform pressure on the strip surface. In order to deflect both jets downward by a certain angle, a cylinder with small diameter is installed tangentially to the exit of the lower lip of the two-dimensional jet. In order to find an optimum cylinder diameter, the three dimensional flow field is analysed numerically by using the commercial code, STAR-CD. And the coating thickness is calculated by using an integral analysis method to solve the boundary layer momentum equation. In order to compare the present noble method with the conventional baffle plate method to prevent the EOC, the flow field with a baffle plate is also calculated. The calculation results show that the tangentially installed cylinder at the bottom lip of the jet exit is more effective than the baffle plate to prevent EOC.

염료감응형 태양전지의 착색 특성 개선 연구 (A Study on the Improvement of Coloring in Dye-sensitized Solar Cell)

  • 서현웅;김미정;손민규;이경준;홍지태;김희제
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.297-300
    • /
    • 2007
  • In this study, we have attempted a new method to enhance the coloring of dye on the $TiO_2$ surface in the dye sensitized solar cell. In the conventional coloring process in a dye sensitized solar cells, dye is absorbed by the covalent bond between TiO2 and dye molecule while the photo-electrode coated with $TiO_2$ layer is soaked in dye solution for about 12-24 hours. But this process takes long time, so we have researched more effective and faster way than the conventional process by applying electric field. Three kinds of electric power such as direct voltage, alternating voltage and pulse voltage were applied to the transparent conducting oxide during the coloring process. As a result, we achieved improved power, fill factor and efficiency of dye-sensitized solar cell in case of applying direct voltage and pulse voltage. In contrast, alternating voltage tend to reduce the dye adsorption on the $TiO_2$ surface and hence the efficiency. We measured the absorption spectra of dye by UV-VIS spectrophotometer before and after soaking the $TiO_2$ in the dye and found no characteristic change in the dye was observed. In this study, we researched on shortening time of coloring process which spent much time in the whole process.

  • PDF

전자기 주조공정에서의 자유표면 형상 제어 (Control of free surface shape in the electromagnetic casting process)

  • 박재일;강인석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.612-615
    • /
    • 1996
  • In the continuous casting process, molten metal contacts the mold wall and the molten metal surface is subject to the mold oscillation. The mold oscillation results in the oscillation marks on the surface of solidified steel, which has undesirable effects on the quality of slabs. In order to reduce the oscillation marks by achieving soft contact of molten metal with the mold surface, alternating magnetic field is applied to the surface of molten metal. However, if the magnetic field strength becomes too strong, the melt flow induced by the magnetic field. causes the instability of the molten metal surface, which has also the bad influence on the slab quality. Therefore, it is very important to choose the optimal position of the inductor coil and the optimal level of electric power to minimize the surface defects. In the present work, as a first step toward the optimization problem of the process, numerical studies are performed to investigate the effects of coil position and the electric power level on the meniscus shape and the flow field. As numerical tools, the boundary integral equation method(BIEM) is used for the magnetic field analysis and the finite difference method (FDM) with orthogonal grid generation is used for the flow analysis.

  • PDF

자장방향이 적층 Bi-2223도체의 자화손실에 미치는 영향 (Effect of Field Orientation on Magnetization Loss in a Stacked Bi-2223 Conductor)

  • 류경우;김현준
    • 한국전기전자재료학회논문지
    • /
    • 제16권1호
    • /
    • pp.77-82
    • /
    • 2003
  • The ac loss is an important issue in the design of high-Tc superconducting power devices such as transformers and cables. In these devices many Bi-2223 tapes are closely stacked together and exposed to alternating magnetic fields that can have different orientations with respect to a tape. In such arrangement the magnetization loss is influenced by the screening current induced in adjacent tapes and thus different from that in a single tape. This stacking effect was experimentally investigated by measuring the magnetization loss in a stack, which consists of a number of tapes. First the magnetization loss in the single tape was measured in order to confirm the reliability of the loss data measured in the stack. The results for the single tape coincide well will the loss characteristics described in other previous works. For the stack In parallel and longitudinal magnetic fields the measured loss is Independent of both the number of tapes and stacking type. The longitudinal magnetization loss Is well explained rather by the slab model for decoupled filaments. For the tall stack in perpendicular field the measured loss at low fields is greatly decreased, compared to the loss of the single tape. However the loss at high fields is unaffected. These loss behaviors in the tall stack are well described by the slab model for full coupling.

Evaluation of Mixing Performance in Several Designs for Microfluidic Channel Mixers

  • 왕양양;서용권;강상모
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2811-2816
    • /
    • 2007
  • We conducted a numerical study of AC-electroosmotic (alternating current) effect on the fluid flow and mixing in a 3-D microchannel. The microchannel used as an efficient micro-mixer is composed of a channel and a series of pairs of electrodes attached in zigzag pattern on the bottom wall. The AC electric field is applied to the electrodes so that a steady flow current takes place around the electrodes. This current is flowing across the channel and thus contributing to the mixing of the fluid within the channel. We performed numerical simulations by using a commercial code to obtain a steady flow field. This steady flow is then used in evaluation of the mixing performance via the concept of mixing index. It was found that good combination of two kinds of electrode, which gave us a good mixing, is not simple harmonic. And when the length ratio of these two kinds of electrode is 2:1, we can get the best mixing effect.

  • PDF