• Title/Summary/Keyword: altered feldspar porphyry

Search Result 4, Processing Time 0.019 seconds

Adsorption Characteristics of Altered Feldspar Porphyry for Heavy Metals (변질 장석반암의 중금속 흡착특성)

  • Park, Sang-Bum;Hwang, Jeong
    • Journal of the Korean earth science society
    • /
    • v.29 no.3
    • /
    • pp.246-254
    • /
    • 2008
  • This study has been performed to evaluate the possibility of utilizing feldspar porphyry as an adsorbent for heavy metals in natural water. The research sample rock 'Maekbansuk' was altered feldspar porphyry which included chlorite, epidote and calcite formed by a prophylitic alteration process. In extraction tests, the majority of extracted elements were Ca and Na, which were extracted in much greater abundance from the groundmass than from the feldspar phenocryst. In adsorption tests, the adsorption capacities of Pb, Fe and Cu within an hour of reaction time were 99, 98 and 97%, respectively, but that of As remained 25% for a full 24 hours. The high adsorption capacities of altered feldspar porphyry for Pb, Fe and Cu suggest its potential utilization as a heavy metal adsorbent fur water purification.

Geochemistry of Granitoids in the Kwangyang-Seungju Area (광양-승주지역에 분포하는 화강암류의 암석화학)

  • Lee, Chang Shin;Kim, Yong Jun;Park, Cheon Young;Lee, Chang Ju
    • Economic and Environmental Geology
    • /
    • v.25 no.1
    • /
    • pp.51-60
    • /
    • 1992
  • The pluton rocks in Kwangyang-Seungju area consist of two mica granite, hornblende diorite, Rimunri quartz diorite, grnodiorite porphyry and granophyre. The analysis of the geochronological data by the methods of K-Ar for the hornblende from Rimunri quartz diorite and hornblende diorite show that the ages are found to be $86{\pm}3.3$ Ma and $108{\pm}4$ Ma, respectively, and K-Ar age for chlorite from the altered two mica granite which intruded by the hornblende diorite of the Bonjeong mine shows $108{\pm}4$ Ma; K-Ar age for sericite from the greisenized hornblende diorite, which is closely associated with the Bonjeong ore deposits, is dated as $94.2{\pm}2.4$ Ma. They correspond to the igneous activity of the Bulgugsa Disturbance periods in the area. In chemical feature for oxides versus silica and AFM triagular diagrams of the pluton rocks in the study area, there is a suggestion of the possibility that these rock facies area a Calc-alkali series of differentiated products by low-pressure crystal fractionation processes in $SiO_2$-undersaturated suites. Compared with hornblende diorite, andesite and granodiorite porphyry, two mica granite, Rimunri quartz diorite and granophyre exhibit a wider range of normalized REE abundance and negative Eu anomalies. Such anomalies imply more extensive feldspar fractionation during crystallization. The Rimunri quartz diorite and hornblende diorite occurring in the margin of four mines(Bonjeong, Okdong, Soungchei and Saungyeul) of this area have high contents of As, Sb, Cu and Zn which have been shown as the best indicators in hypogene gold deposits and low contents of Ba, Cr served as more sensitive indicators. And the granitoids are regarded as the rocks associated with gold and sulfide mineralization of the area.

  • PDF

Occurrence of Clay Minerals from the Bobae Pottery Stone Mine in Pusan (부산 보배도석광산에서 산출하는 점토광물의산상)

  • Hwang, Jin-Yeon;Kim, Kwang-Hye;Jeong, Yoon-Yeong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.27-37
    • /
    • 1993
  • The clay minerals such as sericite, pyrophyllite, chlorite and smectite abundantly occur in the Bobae pottery stone mine in Pusan. In this study, the processes which are responsible for the formation of these minerals were studied by examing their occurrence and mineralogical properties. The so-called pottery stone of this mine is characterized by the predominance of sericite and quartz. The sericite of the pottery stone is mostly $2M-{1}$ type. And many of quartz particles are smaller than a few micron in diameter. The pottery stone also contained a small amount of pyrophyllite and muscovite. The pottery stone deposit occurs within the Cretaceous rhyodacite and is particularly well developed near the contact with the quartz porphyry which intrudes the rhyodacite. The fact implies that the pottery stone is the product of hydrothermal alteration of the rhyodacite by the intrusion of quartz porphyry. The pottery stone was formed by the alteration that accompanies the dissociation of feldspar and chlorite in parent rocks and subsequent formation of sericte and quartz. Smectite, laumontite and kaolinite occur locally within the altered rocks. These minerals were formed after formation of pottery stone. It is noteworthy that beidellite occurs as a pink-colored clay from the altered rocks in the mine.

  • PDF

U-Pb(SHRIMP) and K-Ar Age Dating of Intrusive Rocks and Skarn Minerals at the W-Skarn in Weondong Deposit (원동 중석 스카른대에서의 관입암류와 스카른광물에 대한 U-Pb(SHRIMP) 및 K-Ar 연대)

  • Park, Changyun;Song, Yungoo;Chi, Se Jung;Kang, Il-Mo;Yi, Keewook;Chung, Donghoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.161-174
    • /
    • 2013
  • The geology of the weondong deposit area consists mainly of Cambro-Ordovician and Carboniferous-Triassic formations, and intruded quartz porphyry and dyke. The skarn mineralized zone in the weondong deposit is the most prospective region for the useful W-mineral deposits. To determine the skarn-mineralization age, U-Pb SHRIMP and K-Ar age dating methods were employed. The U-Pb zircon ages of quartz porphyry intrusion (WD-A) and feldspar porphyry dyke (WD-B) are 79.37 Ma and 50.64 Ma. The K-Ar ages of coarse-grained crystalline phlogopite (WD-1), massive phlogopite (WDR-1), phlogopite coexisted with skarn minerals (WD-M), and vein type illite (WD-2) were determined as $49.1{\pm}1.1$ Ma, $49.2{\pm}1.2$ Ma, $49.9{\pm}3.6$ Ma, and $48.3{\pm}1.1$ Ma, respectively. And the ages of the high uranium zircon of hydrothermally altered quartz porphyry (WD-C) range from 59.7 to 38.7 Ma, which dependson zircon's textures affected by hydrothermal fluids. It is regarded as the effect of some hydrothermal events, which may precipitate and overgrow the high-U zircons, and happen the zircon's metamictization and dissolution-reprecipitation reactions. Based on the K-Ar age datings for the skarn minerals and field evidences, we suggest that the timing of W-skarn mineralization in weondong deposit may be about 50 Ma. However, for the accurate timing of skarn mineralization in this area, the additional researches about the sequence of superposition at the skarn minerals and geological relationship between skarn deposits and dyke should be needed in the future.