• Title/Summary/Keyword: alpine wetland

Search Result 9, Processing Time 0.025 seconds

Conservation Measure of Sajapyeong Alpine Wetland (사자평 고산습지의 보전대책)

  • Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.17 no.2
    • /
    • pp.141-149
    • /
    • 2011
  • The formation of Sajapyeong Alpine Wetland was influenced by factors of drainage basin and its geology, and fire-shifting cultivation. Sajapycong drainage basin had a narrow outlet, Sijeon-cheon in it flowed relatively slowly. Bedrock in basin was weak to mechanical weathering, many rock detritus were, produced. Deforestation for reclamation using fire accelerated topsoil loss. Thus much sediments was supplied to Sijeon-cheon and deposited in the channel bed, and wetland was formed on channel marginal footslope. In Sajapyeong moor were Gullies formed along road. Because they blocked sediments and throughflow transferring into moor, moor became dry land. In order to prevent this drying, we have, to raise water level of a drain ditch to level of weathered bedrock to transfer throughflow into moor, modify the shape of ditch to be naturally irregular, and construct large boulders step on the Sijeon-cheon bed to prevent from lowering of its bed.

  • PDF

Formation Processes of Hwaeomneup Wetland, Cheonseong Mountain (천성산 화엄늪의 형성과정)

  • Son, Myoung-Won;Chang, Mun-Gi
    • Journal of the Korean association of regional geographers
    • /
    • v.15 no.2
    • /
    • pp.204-214
    • /
    • 2009
  • The purpose of this paper is to elucidate the formation processes of Hwaeumneup in Cheonseong Mountain which was designated as Wetland Conservation Area in 2002, and to offer data essential to sustainable management of wetland. According to wetland core samples and carbon dating of humus, grassland of Hwaeumneup Wetland Reservation resulted from slash-and-burn agriculture in no reference with climatic changes of last glacial period. And Hwaeumneup is a alpine wetland that is formed as rain water over Cheonseong Mountain crest area infiltrates into bedrock, springs out along joint line below main ridge, and dampens gentle grassland. It needs to support dense vegetation of southwestern ridge of Wetland Reservation in order to sustain water volumn of Hwaeumneup wetland, and to keep from breakdown of block dam at downstream fringe of wetland. And it needs to measure and analyse micro-topography and hydrology changes in Hwaeumneup Wetland Reservation through periodic monitoring.

  • PDF

Hydrogeomorphological Characteristics and Landscape Change of Oegogae Wetland in Jirisan National Park (지리산 외고개습지의 수문지형특성과 경관변화)

  • YANG, Heakun;LEE, Haemi;PARK, Kyeong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.1
    • /
    • pp.29-38
    • /
    • 2010
  • Oegogae wetland is sub-alpine wetland which is formed in piedmont area in Jirisan National Park. Apparently Oegogae wetland seems to be well-protected wetland. Most alpine wetlands are located in the summit area, but Oegogae wetland is located in piedmont area which is transitional zone between the steep slope and relatively flat valley bottom. Oegogae wetland is active in terms of sedimentation and exceeds 1m in depth. Penetration tests show that composing material is soft such as peat and organic-rich sediment. Basal rock of the basin is gneiss and gneissic schist in general, which is good for the formation of wetland because those rocks are easy to form low permeability layer. Baseflow from the wetland takes control of the most of stream flow during the wet season and this is especially true during the dry season. Precipitation during the wet season increases water content and base flow from the wetland.

A New Species of the Genus Bryocamptus (Copepoda, Harpacticoida, Canthocamptidae) from Alpine Wetlands at Jeju Island, Korea

  • Lee, Jimin;Chang, Cheon Young
    • Animal Systematics, Evolution and Diversity
    • /
    • v.32 no.3
    • /
    • pp.219-229
    • /
    • 2016
  • Material of a Bryocamptus species, formerly reported as B. umiatensis Wilson, 1958 from Sakhalin and South Korea, is here recognized as a distinct new species. Specimens of both sexes were recently obtained from an alpine wetland, Sumeunmulbaengdui, located in the Hallasan National Park, Korea, and newly registered as a Ramsar Wetland in 2015. The new species, B. jejuensis n. sp., differs from the type population of B. umiatensis from Alaska by the smooth margin of the anal operculum in both sexes, the peculiarly modified terminal seta on the distal endopodal segment of the male leg 3, the sword-like spinous seta on the distal endopodal segment of the male leg 4, and the presence of a setule row on the inner distal margin of the caudal rami in the female. Both sexes of the new species are described in detail with particular reference to the male characters. A revised key to the seven species of the genus Bryocamptus Chappuis, 1929 occurring in Korean waters is provided.

Silica-scaled chrysophytes from Mt. Sinbul wetland in South Korea

  • Han Soon, Kim;Jae Hak, Lee
    • Journal of Species Research
    • /
    • v.11 no.4
    • /
    • pp.253-265
    • /
    • 2022
  • A study on silica-scaled chrysophytes(Chrysophyceae and Synurophyceae) from Mt. Sinbul alpine wetland, South Korea was performed from January 2018 to March 2020 using scanning electron microscopy (SEM). We found a total of 19 taxa of silica-scaled chrysophytes; Mallomonas(13); Synura (3); Chromophysomonas (1); Chrysosphaerella (1); and Paraphysomonas(1), of which six taxa, including two new species(Mallomonas dimorphus sp. nov. and Mallomonas alpestris sp. nov.), were reported for the first time in Korea. All the species are illustrated with SEM micrographs and briefly described with regard to their taxonomy. Two new species were described based on the cell shape, size and ultrastructure of the scales and bristles. Mallomonas dimorphus sp. nov. belongs to the Sectio Heterospinae in that its scales have a flat dome, a reticulated secondary layer and needle shaped bristles. However, this species is distinguished from other taxa in the Sectio by two different patterns of shield ornamentation and a dome ornamentation. Mallomonas alpestris sp. nov. belongs to Series Torquatae (Sectio Torquatae) characterized elongated domed collar scales, domeless body scales and rear scales with a short spine. However, it is different from all other taxa in the Sectio Torquatae as well as Series Torquatae by shield ornamentation of the body and rear scales with evenly spaced transverse ribs and papillae.

Vegetation and Landscape Characteristics at the Peaks of Mts. Seorak, Jiri and Halla (설악산, 지리산, 한라산 산정부의 식생과 경관 특성)

  • Kong, Woo-seok;Kim, Gunok;Lee, Sle-gee;Park, Hee-na;Kim, Hyun-hee;Kim, Da-bin
    • Journal of Climate Change Research
    • /
    • v.8 no.4
    • /
    • pp.401-414
    • /
    • 2017
  • Vegetation and landscape characteristics at the three highest summits of Republic of Korea, i.e. Seoraksan, Jirisan and Hallasan, are analyzed on the basis of species composition, physiognomy, vegetation distribution and structure of alpine plants, along with landform, geology, soil and habitat conditions. Dominant high mountain plants at three alpine and subalpine belts contain deciduous broadleaved shrub, Rhododendron mucronulatum var. ciliatum (31.6%), and evergreen coniferous small tree, Pinus pumila (26.3%) at Seoraksan, deciduous broadleaved tree, Betula ermanii (35.3%), evergreen coniferous tree, Picea jezoensis (23.5%) at Jirisan, and evergreen coniferous tree, Abies koreana (22.6%), deciduous broadleaved shrub, Rhododendron mucronulatum var. ciliatum, and Juniperus chinensis var. sargentii (19.4%) at Hallasan, respectively. Presence of diverse landscapes at the peak of Seoraksan, such as shrubland, grassland, dry land along with rocky areas, and open land may be the result of hostile local climate and geology. High proportion of grassland and wetland at the top of Jirisan may related to gneiss-based gentle topography and well developed soil deposits, which are beneficial to keep the moisture content high. Occurrence of grassland, shrubland, dry land, conifer vegetation, and rocky area at the summit of Hallasan may due to higher elevation, unique local climate, as well as volcanic origin geology and soil substrates. Presences of diverse boreal plant species with various physiognomy at alpine and subalpine belts, and wide range of landscapes, including rocky, grassland, shrubland, wetland, and conifer woodland, provide decisive clues to understand the natural history of Korea, and can be employed as an relevant environmental indicator of biodiversity and ecosystem stability.

Pollen analysis of alpine wetlands on Mt. Jeombong in Gangwon-do, South Korea and climate change during the late Holocene (점봉산 고산습지의 화분분석과 홀로세 후기 기후변화)

  • Yoon, Soon-Ock;Kim, Minji;Hwang, Sangill
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.4
    • /
    • pp.101-115
    • /
    • 2013
  • 11 alpine wetlands at the upper reaches of Bangtae River on a high flat summit around Mt. Jeombong were found. Two core samples(JB-1 and JB-2) among them were collected in order to reconstruct paleovegetation history and climate change using pollen analysis. Pinus and Quercus dominated at the wetland of JB-2 with a deep water depth were developed from 1,700 yr BP to 1,000 yr BP of the pollen zone I. Subsequently Quercus dominated in the pollen zone II from 1,000 to 400 yr BP, and it is supposed that warm weather prevailed with oak climax forest corresponding to the Medieval Warm Period. Moreover, sphagnum grew densely in the alpine wetlands and the wetlands were extended widely on the summit around Mt. Jeombong with the beginning of subzoneIIc at JB-2. The pollen zone III from 400 yr BP to the present with an increase in Pinus and a decrease in Quercus suggests cold climates under the Little Ice Age. Moreover, human disturbances at JB-2 were more significant than those at JB-1, based on the increase in Pinus.

A Prediction of Forest Vegetation based on Land Cover Change in 2090 (토지피복 변화를 반영한 미래의 산림식생 분포 예측에 관한 연구)

  • Lee, Dong-Kun;Kim, Jae-Uk;Park, Chan
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.2
    • /
    • pp.117-125
    • /
    • 2010
  • Korea's researchers have recently studied the prediction of forest change, but they have not considered landuse/cover change compared to distribution of forest vegetation. The purpose of our study is to predict forest vegetation based on landuse/cover change on the Korean Peninsula in the 2090's. The methods of this study were Multi-layer perceptrom neural network for Landuse/cover (water, urban, barren, wetland, grass, forest, agriculture) change and Multinomial Logit Model for distribution prediction for forest vegetation (Pinus densiflora, Quercus Spp., Alpine Plants, Evergreen Broad-Leaved Plants). The classification accuracy of landuse/cover change on the Korean Peninsula was 71.3%. Urban areas expanded with large cities as the central, but forest and agriculture area contracted by 6%. The distribution model of forest vegetation has 63.6% prediction accuracy. Pinus densiflora and evergreen broad-leaved plants increased but Quercus Spp. and alpine plants decreased from the model. Finally, the results of forest vegetation based on landuse/cover change increased Pinus densiflora to 38.9% and evergreen broad-leaved plants to 70% when it is compared to the current climate. But Quercus Spp. decreased 10.2% and alpine plants disappeared almost completely for most of the Korean Peninsula. These results were difficult to make a distinction between the increase of Pinus densiflora and the decrease of Quercus Spp. because of they both inhabit a similar environment on the Korean Peninsula.

$N_2O$ Emissions on the Soil of Alpine Wetland by Temperature Change (온도 변화에 따른 산지습지 토양의 $N_2O$ 배출 양상)

  • Kim, Sang-Hun;Lim, Sung-Hwan;Choo, Yeon-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.409-418
    • /
    • 2013
  • Global warming due to climate change is a problem facing the entire world. Several factors, such as $CO_2O$ concentration, level of warming, soil temperature, precipitation, water content of soil and denitrification by denitrifying bacteria influence the emission of nitrous oxide ($N_2O$) from soil. In this study, we investigated nitrous oxide emissions from the soil of two wetlands, Jilmoineup in Mt. Odae and Moojechineup in Mt. Jungjok, according to temperature change. Soil collected in Jilmoineup in July showed increasing $N_2O$ emissions as temperature increases, but did not show any significant differences at $10^{\circ}C$ (p<0.05). Soil of $15^{\circ}C$ and $20^{\circ}C$ showed increasing pattern of $N_2O$ emissions until 24 h. After that, however, there was no difference in temperature. Overall, $N_2O$ emissions showed significant differences according to temperature (p<0.05). Soil collected from Moojechineup in July showed increasing $N_2O$ emissions according to temperature increase, but did not show any significant differences at $10^{\circ}C$ (p<0.05) as was the case for Jilmoineup soil. On the other hand, two wetland soils showed a slight increase of $N_2O$ emissions by additional nitrogen supply, but did not show any significant differences in the presence of nitrogen or between nitrogen sources. In conclusion, increasing temperature the wetland soil increased the emission of $N_2O$, which is a known greenhouse gas. In order to more clearly identify $N_2O$ emissions, various subsequent studies such as the influence and correlation of several factors are required.