• Title/Summary/Keyword: almost-primes

Search Result 3, Processing Time 0.017 seconds

ON A WARING-GOLDBACH PROBLEM INVOLVING SQUARES, CUBES AND BIQUADRATES

  • Liu, Yuhui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1659-1666
    • /
    • 2018
  • Let $P_r$ denote an almost-prime with at most r prime factors, counted according to multiplicity. In this paper, it is proved that for every sufficiently large even integer N, the equation $$N=x^2+p_1^2+p_2^3+p_3^3+p_4^4+p_5^4$$ is solvable with x being an almost-prime $P_4$ and the other variables primes. This result constitutes an improvement upon that of $L{\ddot{u}}$ [7].

INFINITE FAMILIES OF CONGRUENCES MODULO 2 FOR 2-CORE AND 13-CORE PARTITIONS

  • Ankita Jindal;Nabin Kumar Meher
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1073-1085
    • /
    • 2023
  • A partition of n is called a t-core partition if none of its hook number is divisible by t. In 2019, Hirschhorn and Sellers [5] obtained a parity result for 3-core partition function a3(n). Motivated by this result, both the authors [8] recently proved that for a non-negative integer α, a3αm(n) is almost always divisible by an arbitrary power of 2 and 3 and at(n) is almost always divisible by an arbitrary power of pji, where j is a fixed positive integer and t = pa11pa22···pamm with primes pi ≥ 5. In this article, by using Hecke eigenform theory, we obtain infinite families of congruences and multiplicative identities for a2(n) and a13(n) modulo 2 which generalizes some results of Das [2].