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INFINITE FAMILIES OF CONGRUENCES MODULO 2 FOR
2-CORE AND 13-CORE PARTITIONS

ANKITA JINDAL AND NABIN KUMAR MEHER

ABSTRACT. A partition of n is called a t-core partition if none of its hook
number is divisible by ¢. In 2019, Hirschhorn and Sellers [5] obtained a
parity result for 3-core partition function asz(n). Motivated by this result,
both the authors [8] recently proved that for a non-negative integer a,
azem(n) is almost always divisible by an arbitrary power of 2 and 3 and
a¢(n) is almost always divisible by an arbitrary power of pg, where j is
a fixed positive integer and ¢ = p]'p3? .- pp™ with primes p; > 5. In
this article, by using Hecke eigenform theory, we obtain infinite families
of congruences and multiplicative identities for as(n) and ai3(n) modulo
2 which generalizes some results of Das [2].

1. Introduction

A partition 8 = (84, B2, - .., Br) of n is a non-increasing sequence of positive
integers whose sum is n and the positive integers (; are called parts of the
partition 8. A partition 5 of n can be represented by the Young diagram [5]
(also known as the Ferrers graph) which consists of the s number of rows such
that the i** row has 8; number of dots e and all the rows start in the first
column. An illustration of the Young diagram for g = (51, 52,...,05,) is as
follows.

@ e Y 51 dOtS
@ ceeeee ° 62 dOtS

[8]:= :
e o e Y 57“ dOtS

For 1 <i<rand 1< j< g, the dot of [3] which lies in the i** row and ;"
column is denoted by (i, 7)"-dot of 3. Let B;» denote the number of dots in j*
column. The hook number H; ; of (4, 5)!"-dot is defined by 3; + ﬁ; —1—7+1
In other words, H; ; = 1+ ho, where hg is the sum of the number of dots lying
right to the (i,5)*-dot in the i** row and the number of dots lying below the
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1074 A. JINDAL AND N. K. MEHER

(i,7)"-dot in the j** column. Given a partition 3 of n, we say that it is a
t-core partition if none of its hook number is divisible by t.

Example 1. The Young diagram of the partition § = (6,3,1) of 10 is

o8 of o

where the superscript on each dot represents its hook number. It can be easily
observed that this is a t-core partition of 10 for t =7 and ¢ > 9.

Example 2. There are no 3-core partitions of 7. This can be easily verified
by looking at the Young diagram of each partition of 7.

For a positive integer n, let a;(n) denote the number of ¢-core partitions of
n. Its generating function is given by

3 (=™t (dhd)
(1.1) > am)g =] S ,
n=0 n=1 (1 - qn) (qv q)oo
where (a;¢)oo = (1 —a)(1 — agq)(1 —ag?)---.
In [3, Corollary 1], Garvan, Kim, Stanton obtained the congruence

(1.2) ap(pjn —0p) =0 (mod p-j),

where p € {5,7,11}, n, j are positive integers and J, = pZ—Zl. In [4, Proposition
3], Granville and Ono proved similar congruences, namely
asi (5'n — 85;) =0 (mod 57),
a7 (T'n = 67;) =0 (mod TLEIFT),
)

ay (1190 — 611 4 (mod 117),

Il
o o

where n, j are positive integers and 8, ; = 2 (mod p?) for p € {5,7,11}.
In 2019, Hirschhorn and Sellers [5] proved a parity result for as(n), i.e., for
alln >0,

as(n) = 1 (mod 2) if n=3r?+ 2r for some integer r,
o (mod 2) otherwise.

Motivated by this result, both the authors proved that for a non-negative in-
teger a, age.,(n) is almost always divisible by an arbitrary power of 2 and 3.
Moreover, they also proved that a;(n) is almost always divisible by an arbi-
trary power of p!, where j is a fixed positive integer and t = p{*p3?--- p%m
with primes p; > 5. In the following theorem, we obtain infinite families of
congruences modulo 2 for as(n) and a;3(n) by using Hecke eigen form theory.

Theorem 1.1. Let k and n be non-negative integers. For each 1 <1i <k + 1,
let p1,pa,...,pr+1 be prime numbers such that p; > 5. Then for any integer
j #0 (mod pry1), we have
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(i) ao (p%p% plont P%Pgmpipk+18(8j+1?k+1)—l> =0 (mod 2),
(i) a3 (104pTp3 - --pi n+13pips - PEpkr1 (pj+Prr1)—T7) =0 (mod 2),
where
1 ifp#£1 (modS38),
€, =
b 8 ifp=1 (mod8).
Corollary 1.1. Let n and k be non-negative integers. For a prime p > 5 and

an integer j Z 0 (mod p), we have

2k+2

(i) a2 (p“*”n + pHHly 4 B 1) =0 (mod 2),
(i) a13 (104p**+2n + 13€,p* 15 + 13p?*+2 — 7) =0 (mod 2).

Furthermore, we prove the following multiplicative formulae for 2-core par-
titions and 13-core partitions modulo 2.

Theorem 1.2. Let k be a positive integer and p be a prime number such that
p =7 (mod 8). Let r be a non-negative integer such that p divides 8r+7. Then

(i) a2 (PF*in+pr+ 1) = (1) (‘72) as (p’“’ln + %) (mod 2),

(i) ai3 (104p"*'n + 104pr 4 91p — 7)

-2 104 1
=(-1) () ais <1O4pk1n + Hdr +91 7) (mod 2).
p p

Corollary 1.2. Let k be a positive integer and p be a prime number such that
p =7 (mod 8). Then

(i) as (pzkn + p%T_l) = (-1)" (%)k asz(n) (mod 2).

k
(ii) a15 (104p%n + 13p2F — 7) = (—1)F (—72) a15(104n + 6) (mod 2).

2. Preliminaries

We recall some basic facts and definition on modular forms. For more details,
we refer to [6,9]. We start with some matrix groups. We define

Ii= SLQ(Z):HZ Z} :a,b,c,dEZ,ad—bc:1}7

rere{[} 2]inezl

For a positive integer N, we define
To(N) := { {‘CL 2} €SLy(Z):c=0 (mod N)} ,

rl(N);:H‘C‘ Z:|€FO(N):aEdEl (modN)},
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F(N)::{[Z Z}ESLQ(Z):aEdzl (mod N), b=c¢=0 (modN)}.

A subgroup T' of SLy(Z) is called a congruence subgroup if it contains I'(V)
for some positive integer N and the smallest IV with this property is called
its level. Note that I'o(N) and I';(N) are congruence subgroups of level N,
whereas SLy(Z) and I', are congruence subgroups of level 1. The index of
To(N)in T is

[[: Do (N)] :NHV(1+;>,

where p runs over prime divisors of N.
Let H denote the upper half of the complex plane. The group

GL} (R) := {[;‘ Z} :a,b,c,deR7ad—bc>0}

actson Hby [24] 2 = gjjr's We identify oo with + and define [ %] £ = ‘;:122,
where £ € QU {oo}. This gives an action of GL3 (R) on the extended half
plane H* = HUQU {oco}. Suppose that I" is a congruence subgroup of SLa(Z).
A cusp of T' is an equivalence class in P! = Q U {co} under the action of T.
The group GLJ (R) also acts on functions f : H — C. In particular, suppose
that v = [¢ 4] € GL3 (R). If f(z) is a meromorphic function on H and k is an

integer, then define the slash operator |, by

(167 (2) = (det )" (cz + d) =" f(72).

Definition 2.1. Let I' be a congruence subgroup of level N. A holomorphic
function f : H — C is called a modular form of integer weight k£ on I' if the
following hold:

(1) Forall ze Hand [¢4] €T,

f <Zjiz) = (cz + d)* £(2).

(2) If v € SLy(Z), then (f|ry)(2) has a Fourier expansion of the form
(fle)(2) =Y ay(n)qk,
n>0

where gy = e2™2/N

For a positive integer k, the complex vector space of modular forms of weight
k with respect to a congruence subgroup I is denoted by My (T").



INFINITE FAMILIES OF CONGRUENCES MODULO 2 1077

Definition 2.2 ([9, Definition 1.15]). Let x be a Dirichlet character modulo
N. We say that a modular form f € My(T';(N)) has Nebentypus character x
if

F(£5) = x@e+ atse

for all z € H and [2 Y] € Tg(N). The space of such modular forms is denoted
by Mk (Lo(N), x)-

The relevant modular forms for the results obtained in this article arise from
eta-quotients. We recall the Dedekind eta-function 7(z) which is defined by

(2.1) n(2) = q"**(¢:¢)00 = ¢*/* H (1—¢"

where ¢ := 2™ and z € H. A function f(z) is called an eta-quotient if it is of

the form
z) = [ n(82)"
5N

where N and rgs are integers with N > 0.

Theorem 2.1 ([9, Theorem 1.64]). If f(z) = [[5x 1(62)™ is an eta-quotient
such that k = 2snTs EL,

N
Z ors =0 (mod 24) and Z 5= 0 (mod 24),
SIN SIN

then f(z) satisfies

F(E5) = e + s

for each [¢ 4] € To(N). Here the character x is defined by x(d) := (@),

d
where s = 55 0".

Theorem 2.2 ([9, Theorem 1.65]). Let ¢,d and N be positive integers with
d | N and ged(e,d) = 1. If f is an eta-quotient satisfying the conditions of
Theorem 2.1 for N, then the order of vanishing of f(z) at the cusp § is

Z ged(d, §)%rs
24 ~ ged(d, ged(d, Xydo

Suppose that f(z) is an eta-quotient satisfying the conditions of Theorem
2.1 and that the associated weight k is a positive integer. If f(z) is holomorphic
at all of the cusps of T'o(N), then f(z) € My(To(N),x). Theorem 2.2 gives
the necessary criterion for determining orders of an eta-quotient at cusps. In

the proofs of our results, we use Theorems 2.1 and 2.2 to prove that f(z) €
My, (To(N), x) for certain eta-quotients f(z) we consider in the sequel.
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We recall the definition of Hecke operators and a few relevant results. Let
m be a positive integer and f(z) = > o7 a(n)g" € My(To(N),x). Then the
action of Hecke operator T,, on f(z) is defined by

oo

FNT =3 X xdd () |

n=0 \d|gcd(n,m)

In particular, if m = p is a prime, we have

o0

P = 3 (atom) + xtot o (1)) o

n=0
We note that a(n) = 0 unless n is a non-negative integer.
3. Proofs of Theorems 1.1 and 1.2
3.1. Prelude to the proofs
We define

(3.1 D ()" =a(g* 6% (0" ¢ and > c(n)g" = (g:9)%,
n=1 n=0

If ptn, then we set b (%) =0andc (%) = 0. We have the following result.

Lemma 3.2. Forn >0 and for a prime p Z 1 (mod 8), we have

(3.2) bpn) = (1) (‘pz) b (Z) .

Further if j #0 (mod p), then
(3.3) b(p°n + pj) = 0.
Proof. Let p be a prime with p # 1 (mod 8). Using (2.1), we note that

> " b(n)g" = n(82)n(162).

By using Theorem 2.1, we obtain that 7(82)n(16z) € S1(I'¢(128), (=28)). Thus
1(82)n(16z) has the Fourier expansion given by

oo

> b(n)g" = n(82n(162) = g — ¢° — 2" + - -

n=1

Therefore, b(n) = 0 for all n > 0 with n # 1 (mod 8). Since n(8z)n(16z) is a
Hecke eigenform, we obtain from [7, Table 1] that

n(E0(162) | T, = 3 (s + (220 (%)) " =) S b

n=1 n=1
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Note that (%) = (%) Comparing the coefficients of ¢" on both sides of
the above equation, we get

-2 n
(3.4) b(pn) + () b <) = A(p)b(n).

p p
Since b(1) =1 and b(%) = 0, by substituting n = 1 in the above expression, we
get b(p) = A(p). Further, since b(p) = 0, we obtain that A(p) = 0. Hence, we
conclude from (3.4) that

(3.5) bpn) + (;2) b (Z) 0,

which proves (3.2). For j £ 0 (mod p), replacing n by pn + j in (3.5), we get

b(p?n + pj) = 0 which proves (3.3). O
Lemma 3.3. Forn >0 and for a prime p =1 (mod 4), we have
(3.6) c (p2n + p28— 1) = pc(n).
If ptn, then
(3.7) c(pn+p28_1) = 0.
Proof. From [1, Page 39, Entry 24(ii)], we have

(: )% = i(—l)"(zn +1)g" T

n=0

Thus

(—1)*(2k 4 1).

NE

k

BAD (2k+1

b

cn)= > (-DF@2k+1)=
=0

2=8n+1

—

This implies that
pP—1 = k
c(pn+ < > ;O (=1)*(2k +1).
(2k+1)2;8pn+p2

Note that if (2k + 1) = 8pn + p?, then p | (2k + 1) and therefore, we can write
2k +1 = p(2k/ + 1) for some positive integer k. Further for such k, we have

ho= 2l 1 2R D 1 4 Pl which gives (—1)F = (—1)F . Hence

2 (oo}
D — 1 [ / n
= -1 2k 1) = — .
C<pn+ S > p 1.;:0 (=1)" (2k +1) =pc (p)
(2K +1)?=82 41
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Replacing n by pn, we obtain (3.6). Also, (3.7) follows since ¢ (%) =0ifptn.
This completes the proof. O

We recall the following identity for 13-core partitions obtained by Kuwali
Das.

Lemma 3.4 (2, Theorem 1]). We have

Z ai3 (104n + 6) ¢" = (¢; ), (¢% qQ)OO (mod 2).

n=0

Lemma 3.5. For j 20 (mod p) and n > 0, we have

PP -1
(3.8) as (p2n +pj+ 3 ) =0 (mod 2),
pP-1

(3.9 as (p2n+ S ) = dpaz(n) (mod 2),
(3.10) a13 (104p°n + 13p(epj +p) —7) =0 (mod 2),
(3.11) ays (104p°n + 13p® — 7) = 6pa13(104n + 6)  (mod 2),
where

_ 1 ip#1 (mods), o f(-1) (—72) ifp#1 (mod8),

P18 ifp=1 (mod3), " ifp=1 (mod 8).

Proof. We consider the two cases p Z 1 (mod 8) and p =1 (mod 8) separately
as follows.

Case 1: p# 1 (mod 8).

From (1.1), we have

s 2. ,2\2
S aa(mg” = L)% — (gg) () (mod 2).

oy (4 @)oo
Thus using Lemma 3.4, we have
(3.12) > ax(n)g® =" ar3(104n + 6)* !
n=0 n=0

= 4(6% 4% (¢'% ¢'%) s (mod 2).
From (3.1) and (3.12), we get
(3.13) az(n) = a13(104n 4+ 6) = b(8n + 1) (mod 2).
Let £ 0 (mod p). From (3.3), we have
b(p*n + pr) = 0.
Replacing n by 8n — pr + 1, we obtain
b(8p*n — p*r + p? + pr) = 0.
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Note that 8p?n — p*r + p? + pr = 8(p?n —pr% + p2§1) + 1. Therefore, using

(3.13), we obtain

2 1 2 1
(3.14) as | p*n — prp +2
8 8
= ay3 (104p°n — 13pr(p® — 1) + 13p*> — 7)
=0 (mod 2).

p>—1
g

system excluding the multiples of p, so do %271) and —r(p? — 1). Thus for
j #0 (mod p), (3.14) can be written as

Since ged( ,p) = 1 and ged(p? — 1,p) = 1, when r runs over a residue

2

-1
a2<p2n+pj+p8 )EO (mod 2)

and
a13 (104p2n +13pj + 13p? — 7) =0 (mod 2).

This proves (3.8) and (3.10) in the case of p Z 1 (mod 8).
Next, replacing n by 8pn + p in (3.2), we obtain

—2
(3.15) b(8p*n + p?) = (—1) <p> b(8n+1).
Note that 8p?n + p? = 8(p?n + ﬁ%) + 1. Therefore, using (3.13) in (3.15), we
get
21 —2
as <p2n—|—p < > = (-1) <p> as(n) (mod 2)
and

—2
ars (104p°n + 13p® — 7) = (—1) (p) a13 (104n 4+ 6) (mod 2),

which proves (3.9) and (3.11) in the case of p # 1 (mod 8).
Case 2: p=1 (mod 8).
From (1.1), we have

S n_ (@05 3
(3.16) Zag(n)q = "2 =(¢;q)5 (mod 2).
= (¢ 0)oo
From Lemma 3.4, we have
(3.17) > a13(104n + 6)¢" = (¢ @)oo (0% 620 = (@:0)3,  (mod 2).
n=0

Invoking (3.1), (3.16) and (3.17), we have
(3.18) az(n) = a13(104n 4 6) = c¢(n) (mod 2).
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If p t n, then from (3.7) and (3.18), we get
p’ -
8

1 21
>:a13(104pn+13p2—7)=c(pn+p 3 )

ag (Pn +
=0 (mod 2).
Next replacing n by pn + j for j £ 0 (mod p), we obtain

p*—1
8

which proves (3.8) and (3.10) in the case of p =1 (mod 8).
Next using (3.6) and (3.18), we get
8

21
a <p2n + b 3 )
= pe(n) = paz(n) = pai3(104n 4+ 6)  (mod 2),
which proves (3.9) and (3.11) in the case of p =1 (mod 8). O

as <p2n +pj+ ) =ai3 (104p2n +104pj + 13p* — 7) =0 (mod 2),

21
a13 (1O4p2n +13p? — 7) =c <p2n + b )

3.6. Proof of Theorem 1.1(i)
For 1 <i <k — 1, we note that

2,2 2
iD; 1...pk_1

8
2 2 2
=P} (Pia - pin + +E—
8 8
Thus, for 1 <i <k — 1, using (3.9) for p = p;, we have
2,2 2
DiDit1Pr — 1
as <p§p§+1 epin H+18k)
2 2
= 0p, a2 <pf+1 cepin+ H'18k> (mod 2).

Also from (3.9), we have

o PR
as (pkn + k8 > = 0p,a2(n) (mod 2).

Therefore, from the congruences in the above two displays, we get

8

8j -1, . .
+ % in the above expression and then using

2,2 2
Pipy - -pp— 1
az (p%p% - pin + ”’“) = 6p,0py -+ Opoaz(n)  (mod 2).

Replacing n by p; n
(3.8) for p = pgy1, we get

Pips - PPk 1 (87 + pry1) — 1>

as (pfp% e PRPR N+ 3
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= 0p,0p, *+ Op,. 02 (pi-s-l” + Prt1] + p,%_%—l)

=0 (mod 2),
when j £ 0 (mod pg4+1). This completes the proof of Theorem 1.1(i).
3.7. Proof of Theorem 1.1(ii)

The proof is similar to the proof of Theorem 1.1(i). For 1 <i <k —1, we
note that

104p2pZ, -+ ppn + 13p3ply - pp — 7

Do 1

13p2 — 7.
R

= 104p; (pfﬂ S pin
Thus, for 1 <4 <k —1, (3.11) implies
ar3(104p7p7y -~ pin + 13p7piy - -pi — 7)

2 .p2 1

= 0p, 013 (104 <p12+1 cpint p“”l8pk> + 6>

= 6p,ar13(104p7, 1 -+ pin +13p7 1 -~ pi — 7)  (mod 2).
Also from (3.11), we have

a13 (104pin + 13p; — 7) = 6p.a13(104n +6)  (mod 2).
Therefore, from the above two congruences, we get
a13(104p3p3 - - - pin+13pip3 - pi — 7) = 8y, 0py - - - Op, a13(104n+6)  (mod 2).
Replacing n by p%_Hn + p’““(epwlgw’““)*l in the above expression and then
using (3.10), we get

a13(104pip3 - - prpham + 13p3p3 - Dipkt1 (€ppsad + Pht1) — 7)
= 51716132 U 6Pka13<104pi+1n + 13<pk+1(6pk+lj +pk+1) - 1) + 6)

= 0py0py - kaa13(104pi+1n + 13(Pk+1(€pk+1j +pry1)) = 1)
=0 (mod 2),

when j # 0 (mod pg4+1). This completes the proof of Theorem 1.1(ii).
3.8. Proof of Theorem 1.2

For any prime p =7 (mod 8), we get from (3.2) that

=0 (23

Let r # 0 (mod p). Replacing n by 8(p*n + r) + 7, we obtain

b0 pr) 4 79) = (1) (=2 ) (HEREDET),
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which can be rewritten as

—1
(3.19) b (8 (pan +pr+ 7p8 ) + 1)

ol ) ).

We note here that 72 - L and Sr"g;_p are integers. Therefore, using (3.13) and
(3.19), we get

—1
(3.20) az (pk“n +pr+ p8 )
-2 _ 8r+7—p
=(-1)(— el — = d?2
( )<p)a2(p n+ & ) (mod 2),

and

(3.21) ars (104p**1n + 104pr + 91p — 7)

—2 104 91
= (—1) (p) ais (104pk_177/ + TT+ - 7) (mOd 2)-

3.9. Proof of Corollary 1.2

Let p be a prime such that p =7 (mod 8). Choose a non negative integer r
such that 8r + 7 = p?*~1. Replacing k by 2k — 1 in (3.20), we obtain

2k 1 ) 2k—2 1
e (el )

8
Replacing k by 2k — 1 in (3.21), we obtain

-2
ar3 (104p**n + 13p*F — 7) = (-1) <p) a13 (104p**~2n 4+ 13p*F 2 — 7)

k
=...=(-1)F (j) a13(104n +6)  (mod 2).
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