• Title/Summary/Keyword: almost semiprime

Search Result 3, Processing Time 0.016 seconds

SEMIPRIME SUBMODULES OF GRADED MULTIPLICATION MODULES

  • Lee, Sang-Cheol;Varmazyar, Rezvan
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.2
    • /
    • pp.435-447
    • /
    • 2012
  • Let G be a group. Let R be a G-graded commutative ring with identity and M be a G-graded multiplication module over R. A proper graded submodule Q of M is semiprime if whenever $I^nK{\subseteq}Q$, where $I{\subseteq}h(R)$, n is a positive integer, and $K{\subseteq}h(M)$, then $IK{\subseteq}Q$. We characterize semiprime submodules of M. For example, we show that a proper graded submodule Q of M is semiprime if and only if grad$(Q){\cap}h(M)=Q+{\cap}h(M)$. Furthermore if M is finitely generated then we prove that every proper graded submodule of M is contained in a graded semiprime submodule of M. A proper graded submodule Q of M is said to be almost semiprime if (grad(Q)$\cap$h(M))n(grad$(0_M){\cap}h(M)$) = (Q$\cap$h(M))n(grad$(0_M){\cap}Q{\cap}h(M)$). Let K, Q be graded submodules of M. If K and Q are almost semiprime in M such that Q + K $\neq$ M and $Q{\cap}K{\subseteq}M_g$ for all $g{\in}G$, then we prove that Q + K is almost semiprime in M.

ON 𝜙-SEMIPRIME SUBMODULES

  • Ebrahimpour, Mahdieh;Mirzaee, Fatemeh
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1099-1108
    • /
    • 2017
  • Let R be a commutative ring with non-zero identity and M be a unitary R-module. Let S(M) be the set of all submodules of M and ${\phi}:S(M){\rightarrow}S(M){\cup}\{{\emptyset}\}$ be a function. We say that a proper submodule P of M is a ${\phi}$-semiprime submodule if $r{\in}R$ and $x{\in}M$ with $r^2x{\in}P{\setminus}{\phi}(P)$ implies that $rx{\in}P$. In this paper, we investigate some properties of this class of sub-modules. Also, some characterizations of ${\phi}$-semiprime submodules are given.

The Integer Factorization Method Based on Congruence of Squares (제곱합동 기반 소인수분해법)

  • Lee, Sang-Un;Choi, Myeong-Bok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.185-189
    • /
    • 2012
  • It is almost impossible to directly find the prime factor, p,q of a large semiprime, n=pq. So Most of the integer factorization algorithms uses a indirect method that find the prime factor of the p=GCD(a-b,n),q=GCD(a+b,n) after getting the congruence of squares of the $a^2{\equiv}b^2$(mod n). Many methods of getting the congruence of squares have proposed, but it is not easy to get with RSA number of greater than a 100-digit number. This paper proposes a fast algorithm to get the congruence of squares. The proposed algorithm succeeded in getting the congruence of squares to a 19-digit number.