• Title/Summary/Keyword: alloy ribbon

Search Result 77, Processing Time 0.019 seconds

The structures and mechanical properties of unidirectionally solidified Al-Fe-Ni alloy (일방향응고시킨 Al-Fe-Ni 합금의 조직과 기계적 성질)

  • 김여원;신민교
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.79-90
    • /
    • 1983
  • The examination for the changes of structures and mechanical properties in directionally solidified Al-Fe-Ni alloys containing the small amount of Fe and Ni was carried out by the varying the composition and solidification rate R of alloy, provided that the temperature gradient was 80 .deg.C/cm. The result were obtained as follows. A) In proportion to the increase of the solidification rate (R), the crystallized phase of this alloy was changed from the Ribbon-type structure to the Rod-type structure. B) The strength was rapidly increased in the changing process of composite shape from the Ribbon-type to the Rod-type with the solidification rate (R) increasing. C) The fiber stress (${\sigma}^f$) and Young's modulus ($E_f$) calculated for the Rod-type structure were 220 kg/$mm^2$ and 11, 800 kg/$mm^2$ respectively, which were in good accord with the rule of Mixtures.

  • PDF

Bulk Amophisation and Decomposition Behavior of Mg-Cu-Y Alloys (Mg-Cu-Y합금의 벌크 비정질화 및 상분해 거동)

  • Kim, S.H.;Kim, D.H.;Lee, J.S.;Park, C.G.
    • Applied Microscopy
    • /
    • v.26 no.2
    • /
    • pp.235-241
    • /
    • 1996
  • Amophization and decomposition behaviour in $Mg_{62}Cu_{26}Y_{12}$ alloy prepared by melt spinning method and wedge type metal mold casting method have been investigated by a detailed transmission electron microscopy. Amorphous phase has formed in melt-spun ribbon. In the case of the wedge type specimen, however, the amorphous phase has formed only around the tip area within about 2 mm thickness. The remaining part of the wedge type specimen consists of crystalline phases, $Mg_{2}Cu\;and\;Cu_{2}Y$. The supercooling for crystallization behaviour of the amorphous $Mg_{62}Cu_{26}Y_{12}$ alloy, ${\Delta}T_x$ has been measured to be about 60 K. Such a large undercooling of the crystallization bahaviour enables formation of the amorphous phase in the $Mg_{62}Cu_{26}Y_{12}$ alloy under the cooling rate of $10^{2}K/s$. The amorphous $Mg_{62}Cu_{26}Y_{12}$ has decomposed into crystalline phases, $Mg_{2}Cu\;and\;Cu_{2}Y$ after heat treatment at $170^{\circ}C\;and\;250^{\circ}C$.

  • PDF

Magnetic Impeadance Effects by the Displacement of Amorphous Ribbon (아몰퍼스 리본의 변위에 의한 자기임피던스 효과)

  • 신용진;소대화;김현욱;임재근;강재덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.73-76
    • /
    • 1999
  • In this thesis, we fabricate a zero-magnetostrictive amorphous ribbon measure the impeadance effect, and then Investigate possibility as a sensor material. $Co_{72.5}$F $e_{0.5}$M $o_{2}$ $B_{15}$ S $i_{5}$ is used as composition of specimen alloy. We first melt the specimen in high frequency induction furnace and then rapidly quench it by using single roll technique. As the result, we obtain a ribbon where thickness is 12${\mu}{\textrm}{m}$, width is 1mm and length is 93mm. Consequently, it is proved through this study that zero-magnetostrictive amorphous ribbon can be used as an excellent magnetic sensor material.rial.l.

  • PDF

Microstructural Change and Magnetic Properties of Nanocrystalline Fe-Si-B-Nb-Cu Based Alloys Containing Minor Elements

  • Nam, Seul-Ki;Moon, Sun-Gyu;Sohn, Keun Yong;Park, Won-Wook
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.327-332
    • /
    • 2014
  • The effect of minor element additions (Ca, Al) on microstructural change and magnetic properties of Fe-Nb-Cu-Si-B alloy has been investigated, in this paper. The Fe-Si-B-Nb-Cu(-Ca-Al) alloys were prepared by arc melting in argon gas atmosphere. The alloy ribbons were fabricated by melt-spinning, and heat-treated under a nitrogen atmosphere at $520-570^{\circ}C$ for 1 h. The soft magnetic properties of the ribbon core were analyzed using the AC B-H meter. A differential scanning calorimetry (DSC) was used to examine the crystallization behavior of the amorphous alloy ribbon. The microstructure was observed by X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM). The addition of Ca increased the electrical resistivity to reduce the eddy current loss. And the addition of Al decreased the intrinsic magnetocrystalline anisotropy $K_1$ resulting in the increased permeability. The reduction in the size of the ${\alpha}$-Fe precipitates was observed in the alloys containing of Ca and Al. Based on the results, it can be concluded that the additions of Ca and Al notably improved the soft magnetic properties such as permeability, coercivity and core loss in the Fe-Nb-Cu-Si-B base nanocrystalline alloys.

The Effect of Magnetic Field on Enhancing the Anisotropy of Melt-spun Nd-Fe-Co(-Zr)-B Alloy (급속응고중 외부자장에 의한 Nd-Fe-Co(-Zr)-B계 합금의 자기이방성 향상)

  • Lee, U-Yeong;Choe, Seung-Deok;Yang, Chung-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.3
    • /
    • pp.233-238
    • /
    • 1992
  • Melt-spun $Nd_{14}Fe_{76}Co_4B_6$ and $Nd_{10.5}Fe_{79}Co_2Zr_{1.5}B_7$ ribbons were prepared under an externally applied magnetic field. Magnetic properties in terms of anisotropy were evaluated by discussing the effect of textured structure of the ribbon samples as well as its powders. About 32 % increase in $(B{\cdot}H)_{max}$ and 18.8 % increase in $B_r$ were observed along the perpendicular direction of the ribbon plane which is more prominent for the Nd-Fe-Co-Zr-B than for the Nd-Fe-Co-B alloy. The enhancement of magnetic anisotropy was monitored by measuring the anisotropy constant of each alloy as a function of quenching rate of the ribbon. It was found that for the melt-spun ribbon quenched at slow rate(less than 7 m/s) the magnetic field effect was overwhelmed by the heat gradient effect through the ribbon thickness while the field effect was prominent at intermediate quenching rate (more than 7~11 m/s). The reproducible maximum energy product, $(B{\cdot}H)_{max}$=16.4 MGOe can be obtained from the Nd-Fe-Co-Zr-B alloy.

  • PDF

Influence of Humidity Variation on the Surface Deffects and Soft Magnetic Properties in the Fabrication of Fe Based Amorphous Alloy Ribbon by the PFC Process (PFC프로세스 의한 Fe기 Fe78Si9B13 비정질 합금리본 제조에 있어서 습도변화가 표면결함 및 연자기적 특성에 미치는 영향)

  • Choi, Y.J.;Jang, S.J.;Kim, S.W.;Jeon, B.S.;Kim, S.M.;Song, C.B.;Kim, Y.C.;Namkung, J.
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.1
    • /
    • pp.4-9
    • /
    • 2015
  • This study was carried out to investigate a influence of humidity variation (%) on the magnetic properties and the surface flaws in the fabrication of Fe-based $Fe_{78}Si_9B_{13}$ amorphous alloy ribbon by Planar Flow Casting process. As a result, the size of the air pocket and the droplet which is observed in the contact surface and the free face of the amorphous alloy ribbon becomes large when the humidity increases and the size highly increases with the surface roughness at the same time. Especially, the surface roughness value which is made in the 65 % of the humidity is the lowest in the contact surface ($Ra=0.60{\mu}m$, $Rz=3.11{\mu}m$) and the free face ($Ra=0.47{\mu}m$, $Rz=3.00{\mu}m$). Also, in case of the soft magnetic property of the magnetic core which is made with the toroidal core of $23(OD)^*20(ID)^*20(H)$ size, in the sample of the amorphous alloy ribbon which is made in 65% of the humidity, the most excellent value is gained as $B_s(B_{700})=1.055T$, $H_c=0.083Oe$, permeability = 1,197 and core loss = 0.276W/kg.

Fabrication and Magnetic Properties of Ultrathin Co-based Amorphous Alloy (코발트계 극박형 비정질합금의 형성과 자기적 성질)

  • 노태환
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.5
    • /
    • pp.255-260
    • /
    • 1998
  • Fabrication condition and magnetic properties of ultrathin Co-based amorphous alloy have been investigated. When the ejection gas pressure was lower than 0.05 kgf/$\textrm{cm}^2$ at the roll speed of 55 m/s, ultrathin ribbons with the thickness less than 10 ${\mu}{\textrm}{m}$ were successfully obtained. The ribbon thickness decreased linearly with the decrease in ejection pressure. Moreover the significant decrease in ribbon width was accompanied with the decrease of thickness in the range of ejection pressure to form an ultrathin ribbon. This behavior was attributed to the decrease of effective ejection pressure in the both end-sides of rectangular nozzle due to the larger friction between molten metal and nozzle wall. The effective permeability at low frequency (1 kHz) decreased largely with the decrease in ribbon thickness, while the coercive force increased with the thickness decrease. It was considered that these behaviors were due to the enhancement of surface effect leading to the suppression of wall motion. However effective permeability at high frequency (1 MHz) increased with the decrease in ribbon thickness, and this was ascribed to the easier magnetization rotation owing to the reduction of eddy current.

  • PDF

Effects of Ag on the Characteristics of Sn-Pb-Ag Solder for Photovoltaic Ribbon (태양광 리본용 Sn-Pb-Ag 솔더의 특성에 미치는 Ag의 영향)

  • Son, Yeon-Su;Cho, Tae-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.5
    • /
    • pp.332-337
    • /
    • 2015
  • We have studied the effects of Ag on the characteristics of $Sn_{60}Pb_{40}Ag_x$ (wt%) solder for photovoltaic ribbon. Ag atoms in the solder formed an alloy phase of $Ag_3Sn$ after reacting with some part of Sn atoms, while they did not react with Pb atoms, but decreased the mean size of Pb solid phase. The enhancement of peel strength between solar cell and ribbon is an important part in the developments of long-lifespan solar module. The peel strength of the solder ribbon of $Sn_{60}Pb_{40}$ (wt%) was $169N/mm^2$, and it was largely enhanced by adding a small amount of Ag atoms. The maximum peel strength was $295N/mm^2$ in the solder ribbon of $Sn_{60}Pb_{40}Ag_2$ (wt%). This result is caused by the high binding energy of 162.9 kJ/mol between Ag atoms in the solder and Ag atoms in Ag sheet.

Solidification Characteristics of Al-Cu Polycrystalline Ribbons in Planar Flow Casting (PFC법에 있어서의 Al-Cu 다결정리본의 응고특성)

  • Lee, Kyung-Ku;Lee, Sang-Mok;Hong, Chun-Ryo
    • Journal of Korea Foundry Society
    • /
    • v.15 no.4
    • /
    • pp.408-415
    • /
    • 1995
  • Polycrystalline Al-Cu ribbons were produced by planar flow casting(PFC). Solidification behavior and microstructual changes of the ribbons have been investigated as a function of ribbon thickness and processing parameters. The solidification front velocity, V varies within the ribbon, decreasing with increasing the distance, S from the wheel-contact surface, as $V=17.6S^{-1}$. In Al-4.5wt%Cu alloy, rapid decrease in solidification velocity toward the free surface causes a change in solidification morphology from planar to cellular, and finally, to dendritic. The length and inclination of columnar grains solidified with planar front were related to the wheel velocity. The transition from particulate degenerate eutectic structure to regular lamellar eutectic structure was observed to be caused by a difference of the relative growth velocites of ${\alpha}-Al$ and ${\theta}$ during solidification in the Al-Cu eutectic alloy.

  • PDF

Magnetic Properties of FeCuNbSiB Nanocrystalline Alloy Powder Cores Using Ball-milled Powder

  • Kim, G. H.;T. H. Noh;Park, G. B.;Kim, K. Y.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.202-203
    • /
    • 2002
  • Ribbon type nanocrystalline alloy cores have shown excellent soft magnetic properties in the high frequency range because of small crystalline anisotropy and nearly zero magnetostriction[1]. In present, however ribbon alloys gives some limit in applications such as a large inductor and reactors of PFC circuit, which are required good DC bias property and low loss in the high frequency. Powder alloys with ultra fine grain structure can be an important way to overcome this kind of disadvantage, and to improve the high frequency soft magnetic properties in conventional metallic powder cores[2]. (omitted)

  • PDF