• Title/Summary/Keyword: alloy composition

Search Result 762, Processing Time 0.032 seconds

Si and Mg doped Hydroxyapatite Film Formation by Plasma Electrolytic Oxidation

  • Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.195-195
    • /
    • 2016
  • Titanium and its alloys are widely used as implants in orthopedics, dentistry and cardiology due to their outstanding properties, such as high strength, high level of hemocompatibility and enhanced biocompatibility. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element, such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}-stabilizer$ and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Silicon (Si) and magnesium (Mg) has a beneficial effect on bone. Si in particular has been found to be essential for normal bone and cartilage growth and development. In vitro studies have shown that Mg plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. The aim of this study is to research Si and Mg doped hydroxyapatite film formation by plasma electrolytic oxidation. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. Each alloy was anodized in solution containing typically 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at room temperature. A direct current power source was used for the process of anodization. Anodized alloys was prepared using 270V~300V anodization voltage at room. A Si and Mg coating was produced by RF-magnetron sputtering system. RF power of 100W was applied to the target for 1h at room temperature. The microstructure, phase and composition of Si and Mg coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

Provenance and Metallurgical Study on Bronze Mirrors Excavated from Mireuksaji Temple Site, Iksan (익산 미륵사지 출토 동경의 금속학적 연구 및 산지 추정)

  • Huh, Il-Kwon;Cho, Nam-Chul;Kang, Hyung-Tae
    • Journal of Conservation Science
    • /
    • v.20
    • /
    • pp.23-30
    • /
    • 2007
  • By analyzing the chemical compositions of bronze mirror presumably excavated from Mireuksaji temple site, Iksan, we have surveyed what alloy composition was used in casting the mirror, and also tried to estimate the manufacturing technique of the bronze mirror, through the observation of microstructure, as well as which region$^{\circ}{\emptyset}s$ galena the lead used in the mirror belonged to, by analyzing the ratio of the lead isotope. The content analysis result of bronze mirrors shows that it consists of 68.8 to 73.3wt% of Cu, 21.6 to 24.9wt% of Sn. In particular, the content of Pb of Mireuk 2 and 3 Samples are higher than those of Miruk 4. The observation result of microstructure demonstrates that Mireuk 2 and 3 consist of ${\alpha}$ and ${\alpha}+{\delta}$ eutectoide phase made through casting process. But Mireuk 4 show other process employed, such as quenching though martensite structure. In the analysis result of provenance though the lead isotope ratio, the origin of the used in bronze millers excavated from Mireuksaji temple site is presumed to be from galenas of Japen, like this those, the chemical competition, microstructure, and lead isotope ratio of bronze mirrors excavated from Mireuksaji can be utilized at fundamental data to compare mutually with other remains.

  • PDF

Collapse Analysis of Ultimate Strength Considering the Heat Affected Zone of an Aluminum Stiffened Plate in a Catamaran (카타마란 알루미늄 보강판의 열영향부 효과를 고려한 최종강도 붕괴 해석)

  • Kim, Sung-Jun;Seo, Kwang-Cheol;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.542-550
    • /
    • 2020
  • The use of high-strength aluminum alloys for ships and of shore structures has many benefits compared to carbon steels. Recently, high-strength aluminum alloys have been widely used in onshore and of shore industries, and they are widely used for the side shell structures of special-purpose ships. Their use in box girders of bridge structures and in the topside of fixed platforms is also becoming more widespread. Use of aluminum material can reduce fuel consumption by reducing the weight of the composite material through a weight composition ratio of 1/3 compared to carbon steel. The characteristics of the stress strain relationship of an aluminum structure are quite different from those of a steel structure, because of the influence of the welding[process heat affected zone (HAZ). The HAZ of aluminum is much wider than that of steel owing to its higher heat conductivity. In this study, by considering the HAZ generated by metal insert gas (MIG) welding, the buckling and final strength characteristics of an aluminum reinforcing plate against longitudinal compression loads were analyzed. MIG welding reduces both the buckling and ultimate strength, and the energy dissipation rate after initial yielding is high in the range of the HAZ being 15 mm, and then the difference is small when HAZ being 25 mm or more. Therefore, it is important to review and analyze the influence of the HAZ to estimate the structural behavior of the stiffened plate to which the aluminum alloy material is applied.

Development of Irreversible Micro-size Ferromagnetic Structures by Hydrogenation and Electron-beam Lithography (수소화 및 전자빔 사진식각 기술에 의한 비가역적 마이크로 크기의 강자성 구조체 개발)

  • Yun Eui-Jung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.1 s.343
    • /
    • pp.7-12
    • /
    • 2006
  • In this study, we developed irreversible and stable micro-size ferromagnetic structures utilizing hydrogenation and electron-beam lithography processes. The compositionally modulated (CM) Fe-Zr thin films that had average compositions $Fe_XZr_{100-x}$ with $x=65-85\%$ modulation periods of similar to 1 nm, and total thicknesses of similar to 100 m were prepared. The magnetic properties of CM Fe-Zr thin films were measured using a SQUID magnetometer, VSM and B-H loop tracer. After hydrogenation, the CM films exhibited larger magnetic moment increases than similar homogeneous alloy films for all compositions and かey showed largest increase in $Fe_{80}Zr_{20}$ composition. After aging in air at $300^{\circ}K$ the hydrogenated $Fe_{80}Zr_{20}$ CM films showed much larger magnetic moment increases, indicating that they relax to a stable, irreversible, soft magnetic state. The selective hydrogenation through electron-beam lithographed windows were performed after the circle shaped windows were prepared on $Fe_{80}Zr_{20}$ CM films by electron beam lithography. The hydrogenation through electron-beam resist and W lithographic techniques give a $49\%$ magnetic moment increase. This method can be applied to nano scale structures.

Bending Impact Properties Evaluation of Sn-xAg-Cu Lead Free Solder Composition and aging treatment (시효처리한 Sn-xAg-Cu계 무연솔더 조성에 따른 굽힘충격 특성평가)

  • Jang, Im-Nam;Park, Jai-Hyun;Ahn, Yong-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.2
    • /
    • pp.49-55
    • /
    • 2011
  • The failure of electronic instruments is mostly caused by heat and shock. This shock causes the crack initiation at the solder joint interface of PCB component which is closely related with the formation of intermetallic compound(IMC). The Ag content in Pb-free Sn-xAg-0.5Cu solder alloy used in this study was 1.0, 1.2 and 3.0 wt.%, respectively. After soldering with PCB component, isothermal aging was performed to 1000 hrs. The growth of IMC layer was observed during isothermal aging. The drop impact property of solder joint was evaluated by impact bending test method. The solder joint made with the solder containing lower Ag content showed better impact bending property compared with that with higher Ag content. On the contrary to this result, the solder joint made with solder containing higher Ag content showed better impact bending property after aging. It should be caused by the formation of fine $Ag_3Sn$, which relieved the impact. It showed consequently the different effect of fine $Ag_3Sn$ and coarse $Cu_6Sn_5$ particles formed in the IMC layer on the impact bending property.

Band alignments in Al-doped GaInAsSb/GaSb heterojunctions (Al이 도핑된 GaInAsSb/GaSb의 경계면에서의 밴드정렬)

  • Shim, Kyurhee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.6
    • /
    • pp.225-231
    • /
    • 2016
  • The valence band maximum (VBM) and conduction band minimum (CBM) of Al-doped GaInAsSb alloys substrated on GaSb are calculated by using an analytic approximation based on the tight binding method. The relative positions of the VBM and CBM between Al-GaInASSb and GaSb determine band alignement type, valence band offset (VBO) and conductin band offset (CBO) for the heterojunctions. In this study, aluminium doping is assumed to be substituted in the cation site and limited up to 20 % because it can easily oxidize and degrade materials. It is found that the Al-doped alloys exhibit type-II band alignments over the entire composition range and make the band gaps increase, whereas the VBO and CBO decrease. The decreasing rate of VBO is higher than that of CBO, which implies the Al components play a decisive role in controlling electrons at the interface. The Al-dopled GaInAsSb alloy has a direct band gap induced by $E({\Gamma})$ with a considerable distance from the E(L) and E(X), however, $E({\Gamma})$ approaches to E(L) and E(X) in the high Sb concentration (Sb > 0.7-0.8) which might affect the electron mobility and degrade the optical quality.

Interfacial Reaction and Joint Strength of the Sn-58Bi Solder Paste with ENIG Surface Finished Substrate (Sn-58Bi 솔더 페이스트와 ENIG 표면 처리된 기판 접합부의 계면 반응 및 접합강도)

  • Shin, Hyun-Pil;Ahn, Byung-Wook;Ahn, Jee-Hyuk;Lee, Jong-Gun;Kim, Kwang-Seok;Kim, Duk-Hyun;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.64-69
    • /
    • 2012
  • Sn-Bi eutectic alloy has been widely used as one of the key solder materials for step soldering at low temperature. The Sn-58Bi solder paste containing chloride flux was adopted to compare with that using the chloride-free flux. The paste was applied on the electroless nickel-immersion gold (ENIG) surface finish by stencil printing, and the reflow process was then performed at $170^{\circ}C$ for 10 min. After reflow, the solder joints were aged at $125^{\circ}C$ for 100, 200, 300, 500 and 1000 h in an oven. The interfacial microstructures were obtained by using scanning electron microscopy (SEM), and the composition of intermetallic compounds (IMCs) was analyzed using energy dispersive spectrometer (EDS). Two different IMC layers, consisting of $Ni_3Sn_4$ and relatively very thin Sn-Bi-Ni-Au were formed at the solder/surface finish interface, and their thickness increased with increasing aging time. The wettability of solder joints was investigated by wetting balance test. The mechanical property of each aging solder joint was evaluated by the ball shear test in accordance with JEDEC standard (JESD22-B117A). The results show that the highest shear force was measured when the aging time was 100 h, and the fracture mode changed from ductile fracture to brittle fracture with increasing aging time. On the other hand, the chloride flux in the solder paste did not affect the shear force and fracture mode of the solder joints.

The Effect of Recasting on the Corrosion behavior of Ni-Cr alloy for Porcelain Fused to Metal Crown (도재용착주조관용 Ni-Cr 합금의 반복주조가 부식거동에 미치는 영향)

  • Bae, Soo-Hyun;Kim, Bu-Sob;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.28 no.2
    • /
    • pp.355-366
    • /
    • 2006
  • The purpose of this study was to determine if repeated casting has a detrimental effect on the corrosion behavior of nickel-chrome casting alloys. The X-ray diffraction analysis, vickers hardness test, SEM, EDX and corrosion test were performed to determine the effects of recasting on chemical composition, microstructure, physical property, castability and corrosion behavior of nickel-chrome casting alloys. The X-ray diffraction analysis results for the cast and recast specimens of the VeraBond and the Rexillium V showed that major crystal phase contained nickel-chrome compounds, Nickel carbide and Chrome carbide. Microstructure analysis results for the cast and recast specimens of the VeraBond and the Rexillium V showed recasting has no effect on microstructure. EDX analysis results indicated the percentage of the main component nickel(Ni) in the specimens of the VeraBond showed a tendency to increase with recasting, but those of other components Carbon(C) showed a tendency to decrease with recasting, Chrome(Cr), Silicon(Si), Aluminium(Al) and molybdenum(Mo) showed no changes in the percentage. The percentage of the main component nickel(Ni) in the specimens of the Rexillium V showed a tendency to increase with recasting, but those of other components silicon(Si), carbon(C) and molybdenum(Mo) showed a tendency to decrease with recasting, chrome(Cr) and aluminium(Al) showed no changes in the percentage. The vickers hardness results for the cast and recast specimens of the VeraBond and the Rexillium V showed a tendency to decrease with recasting, but the differences for the first to fifth cast were not statistically significant. The castability results for the cast and recast specimens of the VeraBond and the Rexillium V showed a tendency to decrease with recasting, but the differences for the first to fifth cast were not statistically significant. The cast and recast specimens of the VeraBond and the Rexillium V showed no differences in the corrosion resistance. The results indicate that the VeraBond and the Rexillium V can be safely recast.

  • PDF

Development of Continuous Galvanization-compatible Martensitic Steel

  • Gong, Y.F.;Song, T.J.;Kim, Han S.;Kwak, J.H.;De Cooman, B.C.
    • Corrosion Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The development of martensitic grades which can be processed in continuous galvanizing lines requires the reduction of the oxides formed on the steel during the hot dip process. This reduction mechanism was investigated in detail by means of High Resolution Transmission Electron Microscopy (HR-TEM) of cross-sectional samples. Annealing of a martensitic steel in a 10% $H_2+N_2$ atmosphere with the dew point of $-35^{\circ}C$ resulted in the formation of a thin $_{C-X}MnO.SiO_{2}$ (x>1) oxide film and amorphous $_{a-X}MnO.SiO_{2}$ oxide particles on the surface. During the hot dip galvanizing in Zn-0.13%Al, the thin $_{C-X}MnO.SiO_{2}$ (x>1) oxide film was reduced by the Al. The $_{a-X}MnO.SiO_{2}$ (x<0.9) and $a-SiO_{2}$ oxides however remained embedded in the Zn coating close to the steel/coating interface. No $Fe_{2}Al_{5-X}Zn_{X}$ inhibition layer formation was observed. During hot dip galvanizing in Zn-0.20%Al, the $_{C-X}MnO.SiO_{2}$ (x>1) oxide film was also reduced and the amorphous $_{a-X}MnO.SiO_{2}$ and $a-SiO_{2}$ particles were embedded in the $Fe_{2}Al_{5-X}Zn_{X}$ inhibition layer formed at the steel/coating interface during hot dipping. The results clearly show that Al in the liquid Zn bath can reduce the crystalline $_{C-X}MnO.SiO_{2}$ (x>1) oxides but not the amorphous $_{a-X}MnO.SiO_{2}$ (x<0.9) and $a-SiO_{2}$ oxides. These oxides remain embedded in the Zn layer or in the inhibition layer, making it possible to apply a Zn or Zn-alloy coating on martensitic steel by hot dipping. The hot dipping process was also found to deteriorate the mechanical properties, independently of the Zn bath composition.

Fabrication and characterization of Sn-3.0Ag-0.5Cu, Sn-0.7Cu and Sn-0.3Ag-0.5Cu alloys (Sn-3.0Ag-0.5Cu, Sn-0.7Cu 및 Sn-0.3Ag-0.5Cu 합금의 제조 및 특성평가)

  • Lee, Jung-Il;Paeng, Jong Min;Cho, Hyun Su;Yang, Su Min;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.3
    • /
    • pp.130-134
    • /
    • 2018
  • In the past few years, various solder compositions have been a representative material to electronic packages and surface mount technology industries as a replacement of Pb-base solder alloy. Therefore, extensive studies on process and/or reliability related with the low Ag composition have been reported because of recent rapid rise in Ag price. In this study, Sn-3.0Ag-0.5Cu, Sn-0.7Cu and Sn-0.3Ag-0.5Cu solder bar samples were fabricated by melting of Sn, Ag and Cu metal powders. Crystal structure and element concentration were analyzed by XRD, XRF, optical microscope, FE-SEM and EDS. The fabricated solder samples were composed of ${\beta}-Sn$, ${\varepsilon}-Ag_3Sn$ and ${\eta}-Cu_6Sn_5$ phases.