• 제목/요약/키워드: alloy composition

검색결과 762건 처리시간 0.031초

전해조건에 따른 Sn-Ni 합금도금층의 조성 및 조직 특성 (Composition and Microstructure of Sn-Ni alloys Electrodeposits according to the Electrodeposits conditions)

  • 예길촌;문근호;채영욱
    • 한국표면공학회지
    • /
    • 제30권3호
    • /
    • pp.202-212
    • /
    • 1997
  • The composition and the microstructure of the Sn-Ni alloy electrodeposited in pyrophosphate bath were investigated according to the electrolysis conditions. The cathode current efficiency increased with the addition of $NH_4CI$ and glycine, while it decreased with the increase of current density. The Sn content of the alloy deposits increased with the increase of $NH_4CI$ in the bath. The alloys with 51~71wt.% Sn had the NiSn single phase structure. The preferred orientation of the single phase alloys changed from (110) to (110)+(101) with the increase of current density and cathode overpotential. The single phase alloys with 50~60wt.%Sn had the smooth surface structure with fine crystallite, while the multiphase alloys showed the surface structure with crystal size and cracks at high curret density.

  • PDF

$a-Si_{1-x}Ge_x:H$ 화합물(化合物) p-i-n 태양전지(太陽電池)의 물리(物理) 및 전류밀도(電流密度)-전압(電壓) 특성(特性) (Physics and current density-voltage characteristics of $a-Si_{1-x}Ge_x:H$ alloy p-i-n solar cells)

  • 권영식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1435-1438
    • /
    • 1994
  • The effects of Ge composition variation in $a-Si_{1-x}Ge_x:H$ alloy p-i-n solar cells on the physical properties and current density-voltage characteristics are analyzed by a new simulation modelling based on the update published experimental datas. The simulation modelling includes newly formulated density of gap density spectrum corresponding to Ge composition variation and utilizes the newly derived generation rate formulars which include the reflection coefficients and can apply to multijunction structures as well as single junction structure. The effects in $a-Si_{1-x}Ge_x:H$ single junction are analyzed through the efficiency, fill factor, open circuit voltage, short circuit current density, free carriers, trap carriers, electric field, generation rate and recombination rate. Based on the results analyzed in single junction structure, the applications to multiple junction structures are discussed and the optimal conditions reaching to a high performance are investigated.

  • PDF

Effect of Electrolyte Composition on Corrosion Behavior of PEO Treated AZ91 Mg Alloy

  • Park, Kyeong Jin;Lee, Jae Ho
    • Corrosion Science and Technology
    • /
    • 제8권6호
    • /
    • pp.227-231
    • /
    • 2009
  • Mg and Mg alloys have been used for lots of applications, including automobile industry, aerospace, mobile phone and computer parts owing to low density. However, Mg and Mg alloys have a restricted application because of poor corrosion properties. Thus, improved surface treatments are required to produce protective films that protect the substrate from corrosive environments. Environmental friendly Plasma Electrolytic Oxidation (PEO) has been widely investigated on magnesium alloys. PEO process combines electrochemical oxidation with plasma treatment in the aqueous solution. In this study, AZ91 Mg alloys were treated by PEO process in controlling the current with PC condition and treated time, concentration of NaF, NaOH, and $Na_2SiO_3$. The surface morphology and phase composition were analyzed using SEM, EDS and XRD. The potentiodynamic polarization tests were carried out for the analysis of corrosion properties of specimen. Additionally, salt spray tests were carried out to examine and compare the corrosion properties of the PEO treated Mg alloys.

Synthesis of Nanocomposite Powder for Tungsten Heavy Alloy by Hydrogen Reduction of Ultrasonic-milled Oxide Nanopowders

  • Lee, Chang-Woo;Lee, Seung-Chul;Lee, Jai-Sung
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.422-423
    • /
    • 2006
  • Ultrasonic-milling of metal oxide nanopowders for the preparation of tungsten heavy alloys was investigated. Milling time was selected as a process variable. XRD results of metal oxide nanopowders ultrasonic-milled for 50 and 100h showed that mean crystallite size reduced with increasing milling time and there was no evidence of contamination or change of composition by impurities. It was found that nanocomposite powders reduced at $800^{\circ}C$ in $H_2$ atmosphere had a composition of 93.1W-4.9Ni-2.0Fe by EDX analysis. Hardness of sintered samples of 50 and 100h was 390 and 463 Hv, respectively, which corresponds to the hardness of commercial products.

  • PDF

Microstructure, Properties and Heat Treatment of Steel Bonded TiC Cermets

  • Farid, Akhtar;Guo, Shiju;Shah, Jawad Ali;Feng, Peizhong
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.618-619
    • /
    • 2006
  • The binder phase for TiC reinforced steel matrix composite was added in the form of elemental powders and master alloy powders. The microstructures, binder phase variation with TiC content and mechanical properties were evaluated. The addition of a type of binder phase largely effects the microstructure and mechanical properties. The binder phase variation from starting composition was observed with increase in wt% TiC content and this variation was higher when the master alloy powders were used as a binder. The response to heat treatment was decreased with an increase in TiC content due to the shift of binder phase from the starting composition.

  • PDF

MICROSTRUCTURE AND ELECTROCHEMICAL CHARACTERISTICS OF ELECTRODEPOSITED Zn-Ni ALLOY COATINGS

  • Short, N.R.;Hui, Wen-Hua;Dennis, J.K.
    • 한국표면공학회지
    • /
    • 제32권3호
    • /
    • pp.281-288
    • /
    • 1999
  • Electrodeposited Zn-Ni alloy coatings are of particular interest for improving the corrosion resistance of steel in a number of enviornments. Of particular interest is the relationship between composition, structure and corrosion rate. This paper firstly reviews the literature regarding composition-structure relationships of Zn-Ni electrodeposits and compares them with the equilibrium phase diagram. Secondly, research was carried out on a wide range of coatings which were produced in the laboratory and their structure and corrosion rates determined. It was found that unambiguous identification of phases from XRD data can be difficult. Maximum corrosion resistance of deposits is obtained at 12-13% Ni, with a $\gamma$ phase structure and predomination of (600) and (411) reflections. Compatibility is important with regard to chromate conversion coatings.

  • PDF

The microstructure and mechanical performance of high strength alloy steel X2M

  • Manigandan, K.;Srivatsan, T.S.;Freborg, A.M.;Quick, T.;Sastry, S.
    • Advances in materials Research
    • /
    • 제3권1호
    • /
    • pp.283-295
    • /
    • 2014
  • In this paper, the microstructure, hardness, tensile deformation and fracture behavior of high strength alloy steel X2M is presented anddiscussed. The influence of both composition and processing on microstructure of the as-provided material and resultant influence of microstructure, as a function of orientation, on hardness, tensile properties and final fracture behavior is highlighted. The macroscopic mode and intrinsic microscopic features that result from fracture of the steel specimens machined from the two orientations, longitudinal and transverse is discussed. The intrinsic microscopic mechanisms governing quasi-static deformation and final fracture behavior of this high strength steel are outlined in light of the effects oftest specimen orientation, intrinsic microstructural effects and nature of loading.

MICROSTRUCTURAL AND MECHANICAL CHARACTERISTICS OF NON-EQUIATOMIC HIGH ENTROPY ALLOY FeMnCoCr PREPARED BY SPARK PLASMA SINTERING

  • NAMHYUK SEO;JUNHYUB JEON;SEUNGGYU CHOI;YOUNG HOON MOON;IN-JIN SHON;SEOK-JAE LEE
    • Archives of Metallurgy and Materials
    • /
    • 제65권3호
    • /
    • pp.1005-1009
    • /
    • 2020
  • In this study, a non-equiatomic high entropy alloy was fabricated using the spark plasma sintering method, and its microstructural features and mechanical properties were investigated. The chemical composition of FeMnCoCr was determined by using the entropy calculation related to the design of high entropy alloys. A bulk sample with the same composition was also prepared using the conventional metallurgical processes of casting and hot rolling. The microstructures of the samples fabricated by these different processes were compared by microscope observation, and a quantitative phase analysis was carried out using FE-SEM. Hardness measurement was used to evaluate mechanical properties. Particular attention was paid to microstructural changes due to heat treatment, which was analyzed by considering how austenite stability is affected by grain refinement.

인공타액에서 수종 아말감의 부식시 용해성분 및 표면 부식 생성물에 관한 실험적 연구 (EXPERIMENTAL STUDY ON THE DISSOLUTION COMPONENTS AND CORROSION PRODUCTS OF SEVERAL AMALGAMS IN ARTIFICIAL SALIVA)

  • 조승주;이명종
    • Restorative Dentistry and Endodontics
    • /
    • 제19권1호
    • /
    • pp.1-26
    • /
    • 1994
  • The purpose of this study was to investigate the dissolution components during corrosion of amalgams and to identify surface corrosion products in the modified Fusayama artificial saliva. Four type of amalgam alloys were used: low copper lathe cut amalgam alloy (Cavex 68), low copper spherical amalgam alloy (Caulk Spherical Alloy), high copper admixed amalgam alloy (Dispersalloy) and high copper single composition amalgam alloy (Tytin). Each amalgam alloy and Hg were triturated according to the manufacturer's direction by means of mechanical amalgamator (Capmaster, S.S.White), and then the triturated mass was inserted into the cylindrical metal mold which was 10mm in diameter and 2.0mm in height and condensed with compression of 150kg/$cm^2$ using oil pressor. The specimens were removed from the mold and stored at room temperature for 7 days and cleansed with distiled water for 30 minutes in an ultrasonic cleaner. The specimens were immersed in the modified Fusayama artificial saliva for the periods of 1 month, 3 months and 6 months. The amounts of Hg, Cu, Sn and Zn dissolved from each amalgam specimen immersed in the artificial saliva for the periods of 1 month, 3 months and 6 months were measured using Inductivity Coupled Plasma Atomic Emission Spectrometry (ICPQ-1000, Shimadzu, Japan) and amount of Ag dissolved from amalgam specimen was measured using Atomic Absorption Spectrophotometry (Atomic Absorption/Flame emission spectrophotometer M-670, Shimadzu, Japan). A surface corrosion products of specimens were analysed using Electron Spectroscopy Chemical Analyser (ESCA PHI-558, PERKIN ELMER, U.S.A.). The secondary image and back scattered image of corroded surface of specimens was observed under the SEM, and the corroded surface of specimens was analysed with the EDX. The following results were obtained. 1. The dissolution amount of Cu was the most in high copper admixed amalgam(Dispersalloy) and the least in high copper single composition amalgam(Tytin). 2. Sn and Zn were dissolved during all the experiment periods, and dissolution amounts were decreased as the time elapsed. 3. Initial surface corrosion products were ZnO and SnO. 4. Corrosion of ${\gamma}$ and ${\gamma}_2$ phase in low copper amalgams was observed and Ag-Cu eutectic alloy phase was corroded in low copper spherical amalgam(Caulk Sperical Alloy). 5. Corrosion of ${\gamma}$ and $\eta$' phase in high copper amalgams was observed and Ag-Cu eutectic alloy phase was corroded in high copper admixed amalgam(Dispersalloy). 6. Sn-Cl was produced in the subsurface of low copper amalgams and high copper admixed amalgam.

  • PDF

반응소결법에 의해 제조된 Fe-Al합금 예비성형체의 특성에 미치는 제인자의 영향 (Effects of Several Factors on the Characteristics of Fe-Al Alloy Preform Manufactured by Reactive Sintering Process)

  • 주형곤;박성혁;주성민;최답천
    • 한국주조공학회지
    • /
    • 제17권1호
    • /
    • pp.58-66
    • /
    • 1997
  • The main aim of the present study is to investigate the effects of several processing parameters on the characteristics of Fe-Al alloy preform manufactured by reactive sintering process. The processing parameters include preform composition of 25, 40, 50, 60 and 75at.%Al, compacting pressure of 10, 20 and $30kg/cm^2$, and mean Al particle size of 29, 66 and $187{\mu}m$. Mean Fe particle size was $39{\mu}m$. The density of preform processed under same compacting pressure was not affected by changing Al composition. The preform with Al compositions of 25, 40, 50 and 60at.% Al swelled after reactive sintering process, thus having lower density than the green compacts. The preform with Al compositions of 75at.%Al, however, shrinked after reactive sintering process, thus having higher density than the green compacts. Ignition temperature increased with increasing compacting pressure, and increased with increasing Al composition at the fixed compacting pressure. And adiabatic temperature decreased with increasing compacting pressure at the fixed Al composition, and increased with increasing Al composition at the fixed compacting pressure. The size of compound particles increased with increasing Al composition. Especially, The size of compound particles increased largely in the case of 75at.%Al. It was observed that 50at.%Al preform have three dimentional network structure having a homogeneous and fine decreasing Al particle size.

  • PDF