• Title/Summary/Keyword: alloy 690

Search Result 102, Processing Time 0.016 seconds

Bayesian approach for prediction of primary water stress corrosion cracking in Alloy 690 steam generator tubing

  • Falaakh, Dayu Fajrul;Bahn, Chi Bum
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3225-3234
    • /
    • 2022
  • Alloy 690 tubing has been shown to be highly resistant to primary water stress corrosion cracking (PWSCC). Nevertheless, predicting the failure by PWSCC in Alloy 690 SG tubes is indispensable. In this work, a Bayesian-based statistical approach is proposed to predict the occurrence of failure by PWSCC in Alloy 690 SG tubing. The prior distributions of the model parameters are developed based on the prior knowledge or information regarding the parameters. Since Alloy 690 is a replacement for Alloy 600, the parameter distributions of Alloy 600 tubing are used to gain prior information about the parameters of Alloy 690 tubing. In addition to estimating the model parameters, analysis of tubing reliability is also performed. Since no PWSCC has been observed in Alloy 690 tubing, only right-censored free-failure life of the tubing are available. Apparently the inference is sensitive to the choice of prior distribution when only right-censored data exist. Thus, one must be careful in choosing the prior distributions for the model parameters. It is found that the use of non-informative prior distribution yields unsatisfactory results, and strongly informative prior distribution will greatly influence the inference, especially when it is considerably optimistic relative to the observed data.

Effects of Laser Surface Melting on the Pitting Resistance of Alloy 690 (Alloy 690의 공식저항성에 미치는 레이저 표면 용융의 영향)

  • Kim, Young-Kyu;Jhee, Tae-Gu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.3
    • /
    • pp.145-150
    • /
    • 2001
  • The effect of laser welding and surface treatment, developed as a method of repairing steam generator tubes, on the pitting corrosion resistance of alloy 690 was examined. The surfaces of some heat-treated Alloy 690 materials were melt-treated using the Nd-YAG laser beam, and then examined to characterize the microstructures. The resistance to pitting corrosion was evaluated by measuring of Ep(pitting potential) through the electrochemical tests and also by measuring the degree of pit generation through the immersion tests. The pit formation characteristics were investigated by observing microstructural changes and pit morphologies. The results show that the resistance to pitting corrosion increases in the order of the following list; solution annealed Alloy 690, thermally treated Alloy 690, and laser surface melt-treated Alloy 690. The melted region was found to have a cellular structure and fine precipitates. It was confirmed that the resistance of Alloy 690 to pit initiation and also to pit propagation was higher when it was laser treated than treated otherwise.

  • PDF

정전위법에 의한 Alloy 600 및 Alloy 690의 Caustic 분위기에서의 부식저항성 비교

  • 맹완영;강영환;남태운
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11b
    • /
    • pp.475-480
    • /
    • 1996
  • Alloy 600 및 Alloy 690의 Caustic 분위기에서, 시편의 포텐셜을 재료의 anodic polarization curve의 active-passive transition 영역의 한 값으로 일정하게 유지함으로서 응력부식균열을 쉽게 유발시키는 정전위 시험방법을 사용하여, 두 합금의 부식저항성을 비교하였다. C-ring형태의 Alloy 600 및 690 시편에 응력을 부과하고 30$0^{\circ}C$의 10% NaOH용액에서 7일간 정전위 응력부식시험을 수행하였다. Alloy 600의 경우, 입계를 따르는 100$\mu$m정도 깊이의 균열이 발생하였으나 Alloy 690의 경우는 균열이 유발되지 않았다. Alloy 690의 경우 부식 시험시간이 경과함에 따라 표면부식전류밀도는 주기적인 Passivation 경향을 보이나 Alloy 600의 경우는 점진적으로 표면부식전류밀도가 증가한다. Alloy 690의 강한 응력부식저항성은 이와 같은 주기적인 Passivation에 의한 것으로 판단된다.

  • PDF

Comparison of oxide layers formed on the low-cycle fatigue crack surfaces of Alloy 690 and 316 SS tested in a simulated PWR environment

  • Chen, Junjie;Nurrochman, Andrieanto;Hong, Jong-Dae;Kim, Tae Soon;Jang, Changheui;Yi, Yongsun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.479-489
    • /
    • 2019
  • Low-cycle fatigue (LCF) tests were performed for Alloy 690 and 316 SS in a simulated pressurized water reactor (PWR) environment. Alloy 690 showed about twice longer LCF life than 316 SS at the test condition of 0.4% amplitude at strain rate of 0.004%/s. Observation of the oxide layers formed on the fatigue crack surface showed that Cr and Ni rich oxide was formed for Alloy 690, while Fe and Cr rich oxide for 316 SS as an inner layer. Electrochemical analysis revealed that the oxide layers formed on the LCF crack surface of Alloy 690 had higher impedance and less defect density than those of 316 SS, which resulted in longer LCF life of Alloy 690 than 316 SS in a simulated PWR environment.

Gd effect on microstructure and properties of the Modified-690 alloy for function structure integrated thermal neutron shielding

  • Cheng Zhang;Jie Pan;Zixie Wang;Zhaoyu Wu;Qiliang Mei;Qianxue Ding;Jing Gao;Xueshan Xiao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1541-1558
    • /
    • 2023
  • The new Modified-690Gd alloy, namely as Ni-30Cr-(10-x) Fe-xGd (x = 0.5, 1.0, 1.5,2.0, 3.0 wt%) for function structure integrated thermal neutron shielding has been prepared and characterized. The Modified-690Gd alloy was mainly composed of γ austenite matrix and (Ni, Cr, Fe)5Gd precipitated along grain boundaries. The new Modified-690Gd alloy had great mechanical properties, which had the tensile strength exceeding 620 MPa and the elongation being above 50%. Meanwhile, this alloy had excellent weldability and good corrosion resistance in boric acid. The new Modified-690Gd alloy is expected to be a kind of high efficiency thermal neutron shielding materials.

Ordering of Alloy 690 Steam Generator Tubings in a Nuclear Power Plant (원자력발전소 증기발생기 Alloy 690 전열관 재료의 규칙화 반응)

  • Seong Sik Hwang;Min Jae Choi;Sung Woo Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.214-219
    • /
    • 2023
  • Considering the case in the United States where most nuclear power plants with an initial design life of 40 years continue to operate until 60 or 80 years after undergoing material soundness evaluation, it is time to plan a more robust long-term operation strategy for nuclear power plants in Korea. There are some reports that SRO/LRO might be formed when Alloy 690 is heat treated for 10,000 hours to 100,000 hours at 360 to 450 ℃. The possibility of LRO formation in Alloy 690 steam generator tubings of Kori nuclear power plant unit 1 (Kori-1) was investigated using existing research papers. The mechanism in which SRO/LRO occurred was also surveyed. Alloy 690 was found to be more likely to cause ordering than Alloy 600 in terms of alloy composition. The ordering could be evaluated through changes in material properties. However, it is difficult to evaluate it from a microstructural point of view. The likelihood of LRO in Alloy 690 of the Kori-1 plant operated at 320 ℃ for 19 years seemed to be low in terms of time and exposure temperature.

Creep Deformation and Rupture Behavior of Alloy 690 Tube (Alloy 690 전열관의 크리프 변형 및 파단 거동)

  • Kim, Woo-Gon;Kim, Jong-Min;Kim, Min-Chul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • Creep rupture data for Alloy 690 steam generator tubes in a pressurized water reactor are essentially needed to demonstrate a severe accident scenario on thermally-induced tube failures caused by hot gases in a damaged reactor core. The rupture data were obtained using the tube specimens under different applied-stress levels at 650℃, 700℃, 750℃, 800℃, and 850℃. Important creep constants were proposed using various creep laws in terms of Norton power law, Monkman-Grant (M-G) relation, damage tolerance factor (λ), and Zener-Hollomon parameter (Z). In addition, a creep activation energy (Q) value for Alloy 690 tube was reasonably determined using experimental data. Creep behaviors such as creep strength, creep rates, rupture elongation showed the results of temperature dependence well. Modified M-G plot improved a correlation of the creep rate and rupture life. Damage tolerance factor for Alloy 690 tubes was found to be λ =2.20 in an average value. Creep activation energy for Alloy 690 tube was optimized for Q=350 (kJ/mol). A plot of Z parameter obeyed a good linearity, and the same creep mechanism was inferred to be operative in the present test conditions.

Evaluation of Creep Behaviors of Alloy 690 Steam Generator Tubing Material (Alloy 690 증기발생기 전열관 재료의 크리프 거동 평가)

  • Kim, Jong Min;Kim, Woo Gon;Kim, Min Chul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.2
    • /
    • pp.64-70
    • /
    • 2019
  • In recent years, attention has been paid to the integrity of steam generator (SG) tubes due to severe accident and beyond design basis accident conditions. In these transient conditions, steam generator tubes may be damaged by high temperature and pressure, which might result in a risk of fission products being released to the environment due to the failure. Alloy 690 which has increased the Cr content has been replaced for the SG tube due to its high corrosion resistance against stress corrosion cracking (SCC). However, there is lack of research on the high temperature creep rupture and life prediction model of Alloy 690. In this study, creep test was performed to estimate the high temperature creep rupture life of Alloy 690 using tube specimens. Based on manufacturer's creep data and creep test results performed in this study, creep life prediction was carried out using the Larson-Miller (LM) Parameter, Orr-Sherby-Dorn (OSD) parameter, Manson-Haford (MH) parameter, and Wilshire's approach. And a hyperbolic sine (sinh) function to determine master curves in LM, OSD and MH parameter methods was used for improving the creep life estimation of Alloy 690 material.

SUSCEPTIBILITY OF ALLOY 690 TO STRESS CORROSION CRACKING IN CAUSTIC AQUEOUS SOLUTIONS

  • Kim, Dong-Jin;Kim, Hong Pyo;Hwang, Seong Sik
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.67-72
    • /
    • 2013
  • Stress corrosion cracking (SCC) behaviors of Alloy 690 were studied in lead-containing aqueous alkaline solutions using the slow strain rate tension (SSRT) tests in 0.1M and 2.5M NaOH with and without PbO at $315^{\circ}C$. The side and fracture surfaces of the alloy were then examined using scanning electron microscopy after the SSRT test. Microstructure and composition of the surface oxide layer were analyzed by using a field emission transmission electron microscopy, equipped with an energy dispersive X-ray spectroscopy. Even though Alloy 690 was almost immune to SCC in 0.1M NaOH solution, irrespective of PbO addition, the SCC resistance of Alloy 690 decreased in a 2.5M NaOH solution and further decreased by the addition of PbO. Based on thermodynamic stability and solubility of oxide, high Cr of 30wt% in the Alloy 690 is favorable to SCC in mild alkaline and acidic solutions whereas the SCC resistance of high Cr Alloy 690 is weakened drastically in the strong alkaline solution where the oxide is not stable any longer and solubility is too high to form a passive oxide locally.

EFFECTS OF IRRADIATION ON THERMAL CONDUCTIVITY OF ALLOY 690 AT LOW NEUTRON FLUENCE

  • Ryu, Woo Seog;Park, Dae Gyu;Song, Ung Sup;Park, Jin Seok;Ahn, Sang Bok
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.219-222
    • /
    • 2013
  • Alloy 690 has been selected as a steam generator tubing material for SMART owing to a near immunity to primary water stress corrosion cracking. The steam generators of SMART are faced with a neutron flux due to the integrated arrangement inside a reactor vessel, and thus it is important to know the irradiation effects of the thermal conductivity of Alloy 690. Alloy 690 was irradiated at HANARO to fluences of (0.7-28) ${\times}10^{19}n/cm^2$ (E>0.1MeV) at $250^{\circ}C$, and its thermal conductivity was measured using the laser-flash equipment in the IMEF. The thermal conductivity of Alloy 690 was dependent on temperature, and it was a good fit to the Smith-Palmer equation, which modified the Wiedemann-Franz law. The irradiation at $250^{\circ}C$ did not degrade the thermal conductivity of Alloy 690, and even showed a small increase (1%) at fluences of (0.7~28) ${\times}10^{19}n/cm^2$ (E>0.1MeV).