DOI QR코드

DOI QR Code

Comparison of oxide layers formed on the low-cycle fatigue crack surfaces of Alloy 690 and 316 SS tested in a simulated PWR environment

  • Received : 2018.06.07
  • Accepted : 2018.10.08
  • Published : 2019.04.25

Abstract

Low-cycle fatigue (LCF) tests were performed for Alloy 690 and 316 SS in a simulated pressurized water reactor (PWR) environment. Alloy 690 showed about twice longer LCF life than 316 SS at the test condition of 0.4% amplitude at strain rate of 0.004%/s. Observation of the oxide layers formed on the fatigue crack surface showed that Cr and Ni rich oxide was formed for Alloy 690, while Fe and Cr rich oxide for 316 SS as an inner layer. Electrochemical analysis revealed that the oxide layers formed on the LCF crack surface of Alloy 690 had higher impedance and less defect density than those of 316 SS, which resulted in longer LCF life of Alloy 690 than 316 SS in a simulated PWR environment.

Keywords

References

  1. T. Couvant, Corrosion in pressurized water reactors (PWRs), in: K.L. Murty (Ed.), Materials' Ageing and Degradation in Light Water Reactors, Woodhead Publishing, 2013, pp. 70-80.
  2. T. Allen, J. Busby, M. Meyer, D. Petti, Materials challenges for nuclear systems, Mater. Today 13 (2010) 14-23.
  3. M. Higuchi, K. Sakaguchi, Y. Nomura, A. Hirano, Final proposal of environmental fatigue life correction factor (Fen), in: Codes Stand, vol. 1, ASME, 2007, pp. 111-122.
  4. O. Chopra, G.L. Stevens, Effect of LWR Coolant Environments on the Fatigue Life of Reactor Materials, NUREG/CR-6909 draft Rev.1, 2014.
  5. C. Jang, H. Jang, J.-D. Hong, H. Cho, T.S. Kim, J.-G. Lee, Environmental fatigue of metallic materials in nuclear power plants - a review of Korean test programs, Nucl. Eng. Technol. 45 (2013) 929-940. https://doi.org/10.5516/NET.07.2013.040
  6. U.S. Nuclear Regulatory Commission, Guidelines for Evaluating Fatigue Analyses Incorporating the Life Reduction of Metal Components due to the Effects of the Light-water Reactor Environment for New Reactors, Regulatory Guide 1.207 Draft Rev. 1, 2014.
  7. H. Cho, B.K. Kim, I.S. Kim, C. Jang, D.Y. Jung, Fatigue life and crack growth mechanisms of the type 316LN austenitic stainless steel in $310{\circ}C$ deoxygenated water, J. Nucl. Sci. Technol. 44 (2007) 1007-1014. https://doi.org/10.1080/18811248.2007.9711340
  8. H. Cho, B.K. Kim, I.S. Kim, C. Jang, Low cycle fatigue behaviors of type 316LN austenitic stainless steel in $310{\circ}C$ deaerated waterefatigue life and dislocation structure development, Mater. Sci. Eng. 476 (2008) 248-256. https://doi.org/10.1016/j.msea.2007.07.023
  9. J.D. Hong, J. Lee, C. Jang, T.S. Kim, Low cycle fatigue behavior of alloy 690 in simulated PWR water-effects of dynamic strain aging and hydrogen, Mater. Sci. Eng. 611 (2014) 37-44. https://doi.org/10.1016/j.msea.2014.05.069
  10. Y.H. Lu, Q.J. Peng, T. Sato, T. Shoji, An ATEM study of oxidation behavior of SCC crack tips in 304L stainless steel in high temperature oxygenated water, J. Nucl. Mater. 347 (2005) 52-68. https://doi.org/10.1016/j.jnucmat.2005.07.006
  11. T. Terachi, K. Fujii, K. Arioka, Microstructural characterization of SCC crack tip and oxide film for SUS 316 stainless steel in simulated PWR primary water at $320{\circ}C$, J. Nucl. Sci. Technol. 42 (2005) 225-232. https://doi.org/10.1080/18811248.2005.9726383
  12. O.K. Chopra, W.J. Shack, A review of the effects of coolant environments on the fatigue life of LWR structural materials, J. Pressure Vessel Technol. 131 (2009) 21409. https://doi.org/10.1115/1.3027496
  13. M. Higuchi, K. Sakaguchi, A. Hirano, Y. Nomura, Revised and new proposal of environmental fatigue life correction factor (Fen), in: Codes Stand, vol. 1, ASME, 2006, pp. 93-102.
  14. M. da Cunha Belo, M. Walls, N.E. Hakiki, J. Corset, E. Picquenard, G. Sagon, D. Noel, Composition, structure and properties of the oxide films formed on the stainless steel 316L in a primary type PWR environment, Corrosion Sci. 40 (1998) 447-463. https://doi.org/10.1016/S0010-938X(97)00158-3
  15. R. Soulas, M. Cheynet, E. Rauch, T. Neisius, L. Legras, C. Domain, Y. Brechet, TEM investigations of the oxide layers formed on a 316L alloy in simulated PWR environment, J. Mater. Sci. 48 (2013) 2861-2871. https://doi.org/10.1007/s10853-012-6975-0
  16. F. Carrette, M.C. Lafont, L. Legras, L. Guinard, B. Pieraggi, Analysis and TEM examinations of corrosion scales grown on alloy 690 exposed to PWR environment, Mater. A. T. High. Temp. 20 (2003) 581-591. https://doi.org/10.1179/mht.2003.067
  17. J. Huang, X. Wu, E.-H. Han, Electrochemical properties and growth mechanism of passive films on Alloy 690 in high-temperature alkaline environments, Corrosion Sci. 52 (2010) 3444-3452. https://doi.org/10.1016/j.corsci.2010.06.016
  18. M. Sennour, L. Marchetti, F. Martin, S. Perrin, R. Molins, M. Pijolat, A detailed TEM and SEM study of Ni-base alloys oxide scales formed in primary conditions of pressurized water reactor, J. Nucl. Mater. 402 (2010) 147-156. https://doi.org/10.1016/j.jnucmat.2010.05.010
  19. H. Lefaix-Jeuland, L. Marchetti, S. Perrin, M. Pijolat, M. Sennour, R. Molins, Oxidation kinetics and mechanisms of Ni-base alloys in pressurised water reactor primary conditions: influence of subsurface defects, Corrosion Sci. 53 (2011) 3914-3922. https://doi.org/10.1016/j.corsci.2011.07.024
  20. B. Beverskog, I. Puigdomenech, Pourbaix diagrams for the ternary system of iron-chromium-nickel, Corrosion 55 (1999) 1077-1087. https://doi.org/10.5006/1.3283945
  21. L. Marchetti, F. Miserque, S. Perrin, M. Pijolat, XPS study of Ni-base alloys oxide films formed in primary conditions of pressurized water reactor, Surf. Interface Anal. 47 (2015) 632-642. https://doi.org/10.1002/sia.5757
  22. H. Shin, F. Mansfeld, Concerning the use of the Kramers-Kronig transforms for the validation of impedance data, Corrosion Sci. 28 (1988) 933-938. https://doi.org/10.1016/0010-938X(88)90040-6
  23. Y. Qiu, T. Shoji, Z. Lu, Effect of dissolved hydrogen on the electrochemical behaviour of Alloy 600 in simulated PWR primary water at $290^{\circ}C$, Corrosion Sci. 53 (2011) 1983-1989. https://doi.org/10.1016/j.corsci.2011.02.020
  24. M. Dumerval, S. Perrin, L. Marchetti, M. Tabarant, F. Jomard, Y. Wouters, Hydrogen absorption associated with the corrosion mechanism of 316L stainless steels in primary medium of pressurized water reactor (PWR), Corrosion Sci. 85 (2014) 251-257. https://doi.org/10.1016/j.corsci.2014.04.025
  25. F. Jambon, L. Marchetti, F. Jomard, J. Chene, Characterisation of oxygen and hydrogen migration through oxide scales formed on nickel-base alloys in PWR primary medium conditions, Solid State Ionics 231 (2013) 69-73. https://doi.org/10.1016/j.ssi.2012.10.012
  26. K. Oh, S. Ahn, K. Eom, H. Kwon, A Study on the localized corrosion and repassivation kinetics of Fe-20Cr- x Ni (x = 0-20 wt%) stainless steels via electrochemical analysis, Corrosion Sci. 100 (2015) 158-168. https://doi.org/10.1016/j.corsci.2015.07.022
  27. J.J. Kim, M.Y. Yu, Study on the passive film of type 316 stainless steel, Int. J. Electrochem. Sci. 8 (2013) 11847-11859.
  28. D.S. Morton, S.A. Attanasio, G.A. Young, P.L. Andresen, T.M. Angeliu, The influence of dissolved hydrogen on Nickel alloy SCC: a window to fundamental insight, in: Corrosion'2001, NACE, 2000, p. 01117.
  29. D. Kim, I. Sah, H.J. Lee, C. Jang, Hydrogen effects on oxidation behaviors of Haynes 230 in high temperature steam environments, Solid State Ionics 243 (2013) 1-7. https://doi.org/10.1016/j.ssi.2013.04.010
  30. C. Sunseri, Photocurrent spectroscopic investigations of passive films on chromium, J. Electrochem. Soc. 137 (1990) 2411. https://doi.org/10.1149/1.2086952
  31. A. Di Paola, D. Shukla, U. Stimming, Photoelectrochemical study of passive films on stainless steel in neutral solutions, Electrochim. Acta 36 (1991) 345-352. https://doi.org/10.1016/0013-4686(91)85260-E
  32. W.S. Li, J.L. Luo, Uniformity of passive films formed on ferrite and martensite by different inorganic inhibitors, Corrosion Sci. 44 (2002) 1695-1712. https://doi.org/10.1016/S0010-938X(01)00178-0
  33. M. Sennour, L. Marchetti, S. Perrin, R. Molins, M. Pijolat, O. Raquet, Characterization of the oxide films formed at the surface of ni-base alloys in pressurized water reactors primary coolant by transmission electron microscopy, Mater. Sci. Forum 595-598 (2008) 539-547. https://doi.org/10.4028/www.scientific.net/MSF.595-598.539
  34. H. Jang, J.-H. Kim, C. Jang, J.G. Lee, T.S. Kim, Low-cycle fatigue behaviors of two heats of SA508 Gr.1a low alloy steel in $310{\circ}C$ air and deoxygenated water-effects of dynamic strain aging and microstructures, Mater. Sci. Eng. 580 (2013) 41-50. https://doi.org/10.1016/j.msea.2013.05.049
  35. D.M. Grant, D.L. Cummings, D.A. Blackburn, Hydrogen in 316 steel-diffusion, permeation and surface reaction, J. Nucl. Mater. 152 (1988) 139-145. https://doi.org/10.1016/0022-3115(88)90319-4
  36. M. Uhlemann, B.G. Pound, Diffusivity, solubility and trapping behavior of hydrogen in alloys 600, 690tt and 800, Corrosion Sci. 40 (1998) 645-662. https://doi.org/10.1016/S0010-938X(97)00167-4

Cited by

  1. Microstructure and properties of 316L stainless steel foils for pressure sensor of pressurized water reactor vol.53, pp.1, 2019, https://doi.org/10.1016/j.net.2020.06.006
  2. Long-term stability and electronic properties of passive film of lean-duplex stainless steel reinforcements in chloride containing mortar vol.291, 2019, https://doi.org/10.1016/j.conbuildmat.2021.123319