• Title/Summary/Keyword: alkaline decomposition

Search Result 44, Processing Time 0.026 seconds

Preparation of Phase Pure Cuprate Superconductors via The Modification of Sol-Gel Method

  • Ahn, Beom-Shu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.144-148
    • /
    • 2000
  • A modification of the sol-gel method to obtain phase pure superconducting oxides is described. The method starts from organic salts of yttrium, barium and copper, such as acetates, and avoids the sudden and uncontrollable decomposition of the organic fraction which occurs if nitrates are used as starting materials. The aqueous solution obtained with citric acid in an alkaline medium is concentrated under vacuum. The solid so prepared is decomposed at about $300^{\circ}C$ thus giving an oxide precursor containing well dispersed yttrium, barium and copper. Pyrolysis at 850 - $920^{\circ}C$ followed by oxygen annealing gives the superconducting orthorhombic 123 phase. The results of TGA/DTA of the precursor, as well as XRD, electrical and magnetic property measurements on the pyrolysis products are presented and discussed.

Decomposition of Methanol-Water on $M^{II}$/ Cu / ZnO system ($M^{II}$/ Cu / ZnO 계에서의 메탄올-물의 반응)

  • Young-Sook Lee;Chong-Soo Han;Min-Soo Cho;Kae-Soo Rhee
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.22-29
    • /
    • 1988
  • The reaction of methanol-water mixture to $CO_2$ and $H_2$ on alkaline earth metal-copper-zinc oxide has been studied in the temperature range of 150 ${\sim}\;300^{\circ}C$. Generally the addition of the alkaline earth metal to Cu/ZnO resulted in an enhancement of selectivity for $CO_2$ formation and a reduction of catalytic activity. Measurable activities were found from 150$^{\circ}C$, 200$^{\circ}C$, and 250$^{\circ}C$ on Mg/Cu/ZnO, Ca/Cu/ZnO, and Ba/Cu/ZnO respectively. However, the highest selectivity for $CO_2$ formation was observed in Ba/Cu/ZnO catalyst at 250$^{\circ}C$. The effect of alkaline earth metal or ZnO on the reactivity was investigated using temperature programmed desorption of $CO_2$ or temperature programmed reduction with $H_2$ over catalysts respectively. It was found that $CO_2$ interacts more strongly in the sequence of MgO < CaO < BaO and ZnO decereases the reduction temperature of CuO. From the results, it was suggested that ZnO activates $H_2$ in the redox process of Cu component and alkaline earth metals adsorbs $CO_2$ in the catalytic process.

  • PDF

Degradation of Dinobuton in Soil and Solution (Dinobuton의 토양(土壤) 및 용액중(溶液中)에서 분해(分解))

  • Hong, Jong-Uck;Kim, Jung-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.3 no.2
    • /
    • pp.16-22
    • /
    • 1984
  • This study was carried out to investigate the stability of dinobuton (2-sec-butyl-4,6-dinitrophenyl isopropyl carbonate) in distilled water and buffer solutions and its persistence in soils. When dinobuton was incubated at $30^{\circ}C$ and $60^{\circ}C$ in distilled water, the half-lives of dinobuton was 28 and 6 days, respectively. The decomposition of dinobuton was, therefore, faster at high temperature than at low temperature. The half-life of dinobuton was about 27 days in the acidic solution $(pH\; 4{\sim}6)$, whereas 10 and 4 days in the alkaline solutions of pH 9, and 10, respectively. Thus dinobuton was stable in acidic solution, and unstable in alkaline solution. Dinoseb (2-sec-butyl-4,6-dinitrophenol), which is produced in the degradation process of dinobuton, was produced in small amounts in distilled water and buffer solutions. The half-life of dinobuton in sterilized soil was about 16 days longer than in non-sterilized soil. Dinoseb was also more persistent in sterilized soil than in non-sterilized one.

  • PDF

Evaluation of Commercial Anion Exchange Membrane for the application to Water Electrolysis (수전해 시스템에 적용하기 위한 상용 음이온교환막의 특성평가)

  • Jun Ho, Park;Kwang Seop, Im;Sang Yong, Nam
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.496-513
    • /
    • 2022
  • In this study, we sought to verify the applicability of anion exchange membrane water electrolysis system using FAA-3-50, Neosepta-ASE, Sustainion grade T, and Fujifilm type 10, which are commercial anion exchange membranes. The morphology of the commercial membranes and the elements on the surface were analyzed using SEM/EDX to confirm the distribution of functional groups included in the commercial membranes. In addition, mechanical strength and decomposition temperature were measured using UTM and TGA to check whether the driving conditions of the water electrolyte were satisfied. The ion exchange capacity and ion conductivity were measured to understand the performance of anion exchange membranes, and the alkaline resistance of each commercial membrane was checked and durability test was performed because they were driven in an alkaline environment. Finally, a membrane-electrode assembly was manufactured and a water electrolysis single cell test was performed to confirm cell performance at 60℃, 70℃, and 80℃. The long-term cell test was measured 20 cycles at other temperatures to compare water electrolysis performance.

Catalytic Hydrolysis of Sodium Borohydride on LiCoO3 - Supported Pt, Ru Catalysts (LiCoO3에 담지된 Pt, Ru 촉매에 의한 NaBH4 가수분해반응)

  • Ahn, Jong-Gwan;Choi, Seung-Hoon;Lee, Su-Chol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.3261-3266
    • /
    • 2012
  • Sodium borohydride($NaBH_4$) known as the material of hydrogen generation and storage can produce the hydrogen via catalytic hydrolysis. This protide chemical could be used in the hydrogen supply system for residential and mobile fuel cells, and thus many researches and developments regarding to these chemicals and decomposition reactions have been implemented. We experimented the hydrolysis of $NaBH_4$ alkaline solution by metal oxide-supported PGM(platinum group metal) catalysts and measured the generation rate of hydrogen which is product of decomposition reaction. We compared oxides as catalyst supports, and the precious metals, Pt and Ru for the catalysts and studied the effects of amounts of catalyst added and $NaBH_4$ concentrations on the hydrogen generation rates and patterns.

Stability of Soybean Isoflavone Isomers According to Extraction Conditions

  • Choi, Yeon-Bae;Kim, Kang-Sung
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.6
    • /
    • pp.498-503
    • /
    • 2005
  • Stability of soybean isoflavone isomers according to extraction conditions such as temperature, pH, and extracting solvents was investigated. Heating induced three chemical reactions to occur for malony1 derivatives of isoflavones, namely decarboxylation of malony1 groups into acety1 derivatives, deesterification of malony1 residues, and hydrolysis of $\beta$-glycosidic bonds. Among the twelve isoflavone isomers, change in concentrations of acety1glycosides were most pronounced: Acety1 derivatives were present only in trace amounts in unheated hypocotyls, but the content increased dramatically during heating. As for the glycosides, concentrations of daidzin and glycitin increased due to heat treatment, though that of genistin remained almost unchanged. Heat decomposition rates and the patterns differed among the three malony1 derivatives. After 120 min at $80^{circ}C$, the relative concentrations of daidzin, glycitin and genistin were increased from $9.2\%$, $12.4\%$ and $3.3\%$ to $19.3\%$, $21.9\%$ and $6.2\%$, respectively. When crude isoflavones were solubilized in glycine buffer (pH 10.0) and incubated at $80^{circ}C$, deesterification occurred faster than at pH 7.0. When the pH of isoflavone solution was increased, the malony1glycosides were hydrolyzed to their respective glycosides at increased rate. Both acetyl and aglycone forms were unchanged and only de-esterification reactions occurred. At the acidic pH, malonylglycosides were much stable both at 60 and $80^{circ}C$. However at pH 10, $80^{circ}C$ and 1 hr, $75-80\%$ of malonylglycosides were transformed to their deesterified glycosides. When isoflavones were extracted with $60\%$ aqueous ethanol at $60^{circ}C$, isoflavone isomers were stable and the deesterification reactions did not occur in these conditions. However, at $80^{circ}C$ deesterification of malonyiglycosides occurred significantly with $15-20\%$ of malonylglycosides being hydrolyzed into their respective glycosides. This experiment showed that malonylglycosides undergo decomposition when heated or exposed to alkaline conditions. Also, aqueous ethanol was preferred to aqueous methanol as solubilizing media for obtaining extract with minimum degradation of malonylglycosides.

Application of Alkaline Stabilization Processes for Organic Fertilizer of Coastal Sediments (연안 양식장 퇴적물의 비료화를 위한 알카리 안정화 공법의 적용)

  • KIM Jeong Bae;CHOI Woo Jeung;LEE Pil Yong;KIM Chang Sook;LEE Hee Jung;KIM Hyung Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.6
    • /
    • pp.508-513
    • /
    • 2000
  • In an attempt to evaluate the fertilizer of sediments obtained from coastal farming areas, chemical composition, bacteriological quality and heavy metals in the sediments alkalized by quicklime and magnesium hydroxide were analyzed. The optimum conditions of alkalization were also measured. A perfect reaction was possible by the addition of quicklime of $30{\%}$ at the rate of $25{\%}$ of sediment and $100{\%}$ of livestock wastes. According to the classification standard for compost constituent by Higgins, all composts had the intermediate or high grade in $T-N, K_2O,\;CaO\;and\;MgO$, but below the low grade in $P_2O_5$, Stabilization by quicklime and magnesium hydroxide has been known to inhibit bacterial decomposition of organic matter and activity of pathogenic organisms. In this study, raising pH of stabilized sediments to 12 for 2 hours (PSRP rriteria of EPA) allowed $99.9{\%}$ of coliform group, fecal group and viable cell count to be reduced. As a result, sediments of coastal farming areas are likely to be used to produce the organic fertilizer by alkaline stabilization.

  • PDF

$CO_2$ adsorption on ceria impregnated (Ce 담지 NaZSM-5의 이산화타소 흡착 특성)

  • Hemalatha, Pushparaj;Ganesh, Mani;Bhagiyalakshmi, Margandan;Peng, Mei Mei;Jang, Hyun-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.318-322
    • /
    • 2010
  • NaZSM 5 was synthesized in an alkaline medium and impregnated with cerium oxide by wet method using cerium nitrate as the source for cerium. There TGA results shows decomposition of nitrate at $200^{\circ}C$. The ceria impregnated ZSM 5 materials were designated as NaZSM 5 (X) where X is the percent ceria impregnated (3, 5, 7, 11, 19%). They were characterized by XRD, SEM, EDAX, BET techniques. XRD analysis showed decrease in intensity of the patterns with the increase in the ceria loading but crystallization of ceria to larger size is evident for 11 and 19% loading. The surface area and pore volume decreased with increase in ceria loading. The maximum adsorption capacity of NaZSM 5 (5%) is 100.2 mg/g of sorbent. The ceria impregnated NaZSM 5's were found to be regenerable, selective and recyclable.

  • PDF

The Stability of BPMC(O-sec-Butylphenyl-N-Methylcarbamate) Formulations (BPMC(O-sec-Butylphenyl-N-Methylcarbamate)제(劑)의 안정성(安定性)에 관(關)한 연구(硏究))

  • Park, Hyeon-Suk;Hong, Jong-Uck
    • Applied Biological Chemistry
    • /
    • v.21 no.1
    • /
    • pp.31-34
    • /
    • 1978
  • The stability of active ingredient of BPMC formulation under ultraviolet lights and sunlights was investigated using dust, emulsifiable concentrate and granular. The active ingredient of BPMC dust was more rapidly degraded by irradiation with ultraviolet lights than emulsifiable concentrate or granular tested. In the case of BPMC emulsions, the degree of degradation was increased in the order of granular, emulsifiable concentrate, dust by irradiation with ultraviolet lights. BPMC was unstable in alkaline solution and ultraviolet lights had highly significant relation to the decomposition of its active ingredient.

  • PDF

Foamic Characteristics of Porous Materials Using the Duckeum Gold and Silver Mine′s Waste Slime

  • Kim, Hyung-Seok;Ahn, Ji-Whan;Lee, Hyoung-Ho;Kim, Hwan;Park, Kyung-Sun;Lee, Kyuh-Young;Lee, Hong-Lim;Kim, Kyung-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.427-431
    • /
    • 2001
  • In this research, porous materials were made from mine's waste slime. As a temperature changes, a phase changes, a porosity, and a mechanical strength of porous materials were observed and measured. The process of pore-formation was observed by SEM according to the change of heat-treatment temperature and time. It fumed out that the foaming reaction of mine's waste slime was resulted from liquid phase by decomposition of the sanidine and the muscovite-3T. When heat- treated at over 120$0^{\circ}C$, it appeared high porosity. And, to activate the foaming reaction, an alkaline oxide concerned with liquid formation was added and its effects were examined.

  • PDF