• Title/Summary/Keyword: alkali washing

Search Result 69, Processing Time 0.022 seconds

A Study on the Detergency of Alkali-treated Polyester Fabric - The effects of surface structure- (알칼리 감양가공이 Polyester 직물의 세척성에 미치는 영향 -표면구조의 효과를 중심으로-)

  • Shin Rae Won;Kim Sung Reon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.10 no.2
    • /
    • pp.1-9
    • /
    • 1986
  • To study the effects of surface structure of fiber on the decrement of fatty soil removal at high temperature, the following variables were selected: controled and alkali-treated P.E.T.(polyester) fabrics and chopped fibers as substrates to estimate the detergencies, different aging methods of soiled substrates, and different washing temperatures and surfactant solutions. Radiotagged tripalmitin was used as soil and the detergency was estimated by means of liquid scintillation counting method. The results were as following: The surface of the fiber became rough with many grooves and the hydrophilicity of the fiber was increased and the structure of the fabric became loose by alkali treatment. While the detergency of alkali-treated P.E.T. fabric was better than that of controled P. E. T. fabric, there was no significant differences between the detergencies of controled and alkali-treated chopped fibers. These results indicate that the increment of detergency of alkali-treated P.E.T. fabric is mainly resulted from the changes of fabric structure and the improved hydrophilicity of fiber by alkai treatment. The detergency of tripalmitin was increased with elevating temp. below the m.p. of tripalmitin, was decreased around the m.p., and again was increased above the m.p ..It is considered that the decrement of detergency around the m.p. is due to the diffusion of molten tripalmitin into the grooves on fiber surface, the inner part of fiber, and between fibers. When controled and alkali-treated soiled fabrics and soiled chopped fibers were washed in the distilled water and in the Na-DBS solution respectively, below $60^{\circ}C$ detergencies of alkali-treated fabrics and chopped fibers were improved. However above $60^{\circ}C$ this result was reversed. Therefore these results are regarded as the effects of grooves on fiber surface at high temp. and improved hydrophilicity at low temp. by alkali treatment. When controled and alkali-treated soiled fabrics and soiled chopped fibers were hot-aged before washing, the detergencies of both species were decreased generally. Because the soil was diffused into the grooves on fiber surface, the inner part of fiber, and between fibers during hot-aging. The detergencies of hot-aged species were also decreased above certain temp.. These results suggest that the decrement of detergency at high temp. be resulted not only from the diffusion of soil into the grooves on fiber surface, the inner part of fiber, and between fibers, but also from the characteristics of surfactant solutions.

  • PDF

Alkali-Swollen Structures of Native Cellulose Fibers by X-ray Diffraction Methods (X선회절법(線回折法)에 의한 천연 셀룰로오스 섬유의 알칼리 팽윤구조(膨潤構造))

  • Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.38-45
    • /
    • 1992
  • Fine and alkali-swollen structures of native cellulose fibers were investigated by x-ray diffraction methods. The results of fine structures are shown in Table 1. In meridional x-ray diffractograms, the relative intensity ratio R of (002) to (004) for cellulose I was ca. 0.05 and for regenerated cellulose it was ca. 0.45. It was considered that the transformation from cellulose I to cellulose II resulted from the packing or conformational change of cellulose chain. Finally. although cellulose I was not detected in the alkali-swollen celluloses treated for 1 hr to 24 hrs, washing and drying them resulted in the generation of considerable amounts of cellulose I and the amount decreased with increasing alkali duration.

  • PDF

Effects of Electrolytic Alkali Water Washing on Mackerel (Scomber japonicus) Muscle Protein Heat Gel Rheology (고등어육 단백질 가열겔 물성에 대한 알카리 전해수세수 효과)

  • Lee, Nahm-Gull
    • Journal of Environmental Science International
    • /
    • v.21 no.2
    • /
    • pp.233-240
    • /
    • 2012
  • In this study, the alkiline water washing condition of mackerel(Scomber japonicus) dark meat was investigated to improve processing conditions of red muscle fish meat paste heating gel. Chemical alkaline water(CWM) and electrolytic alkiline water(EWM, pH 12) were used for washing the mackerel raw meat. Washed meats were minced with 2.5% salt and heated at $90^{\circ}C$/15 min to testing texture profile analysis. Moisture of CWM and EWM was increased with both washing times(p<0.05). Crude lipids and protiens were decreased with washing times. Lightness of chemical alkaline water washed mackerel heated paste gel(CWHPG) was higher than electrolytic alkaline water washed mackerel heated paste gel(EWHPG). Redness and yellowness were more decreased than control meats. Jelly strength of CWHPG and EWHPG was not increased more than 2 times wased meat and was increased with protein decrease. Texture profile analysis, max force1 of CWHPG and EWHPG was higher hardeness than the control meat except gel strains. From these results, it could be suggested that electric alkialine water washing is also effective in advance the red meat paste heating gel process of kamaboko industry.

Color Change in and Soil Removal from Cocoa Soiled Cloth in Hard Water

  • Kim, Hyo-Jeong;Seok, Hye-Joon;Chung, Hae-Won
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2009.03a
    • /
    • pp.81-82
    • /
    • 2009
  • IEC 60456 declared the cocoa soiled cloth to be one of the standard soiled test cloths for measuring the performance of the clothes washing machines. Researchers for textile washing have known that cocoa soiled cloth has shown unpredictable washing performance. The color of cocoa mainly comes from flavonoids, and flavonoids reversibly change color with alkalinity from pH 1 to pH 7 as food colorants. The color change of flavonoids under various washing conditions, in the alkali solution, has not yet been confirmed. In this study, we have investigated the color change and the soil removal of the cocoa soiled cloth which were washed with alkaline washing liquids of various hardnesses. The cocoa soiled cloth which was washed in the water which was 60ppm or higher became darker than the soiled cloth. When the cloth was washed in the detergent solution, the cloth was slightly darker only when the washing condition was $20^{\circ}$ and 250ppm. As the water hardness increased, the soil removal decreased and the higher washing temperature was more effective.

  • PDF

Remediation of Oil Contaminated Soils by Rice Straw Ash (Rice Straw Ash를 이용한 유류오염토양 정화)

  • 정경원;장성호
    • Journal of Environmental Science International
    • /
    • v.12 no.7
    • /
    • pp.783-789
    • /
    • 2003
  • This study was conducted to reuse the rice straw ash as washing agent for oil contaminated soils. The results are summarized as follows. The physical characteristics of rice straw before and after burning were as follows ; In case of burning rice straw 1g, the rice straw ash was generated 0.14g and pH was changed neutrality into alkali(pH 10.9) and specific surface area was increased to five times and particle distribution was corresponded to fine silt.(under 0.05mm) The physical characteristics of rice straw ash were Carbon 10.9%, Hydrogen 1.5%, Oxygen 23.4%, Nitrogen 5.2%, Sulfate 1.2% and chemical characteristics were Si 189.2ppm, Ca 10.2ppm, Mg 4.7ppm. Oil cleanup ratio by pH variation were about 40∼50% of initial concentration of oil by pH 10∼11. As the result of cleanup comparative experiment, the rice straw ash was about 20∼30%, the tritonX-100 about 40∼50% of washing efficiency, and then in the future it will be possibility of substitute washing agent.

Dyeability using Characteristics of Curly Dock (참소리쟁이의 특성을 이용한 염색성 연구)

  • Son, Won-Kyo;Shin, Jung-Sook
    • The Research Journal of the Costume Culture
    • /
    • v.14 no.2
    • /
    • pp.260-270
    • /
    • 2006
  • In this research, the curly dock was used in the process of dyeing for fabrics of the inner wear & the patient wear. Since the curly dock has a pharmacological effect on dermatosis, this study focused on the variety of color and functions of the inner wear fabrics & patient wear fabrics to make the best use of the pharmacological effect of curly dock. With regards to giving a variety of colors and functions in the inner wear, patient wear fabrics, the curly dock dye was used in each treatment conditions on the cotton & silk fabrics. After dyeing, the dyeability, color change, light fastness, washing fastness, perspiration fastness, antibiosis, far infrared emissivity and emission power were evaluated. The evaluation results are as follows; The dyeablity increased from repeated dyeing and, by using the mordant, variety of colors such as skin, mustard, greyish-brown and dark earth colors were conformed to the naked eye. Fe mordant was better than Al on the lightfastness and the washing fastness. The repeated dyeing was found out to have less effect on neither lightfastness nor washing fastness. Both silk and cotton fabrics were graded $3{\sim}4$, since their degree of degradation appeared to be the same in alkali perspiration and acidic perspiration. In the case of silk fabrics mordanted by Al, the rate of declining in both Staphylococcus aureus ATCC 6538 and Klebsiella pneumonia ATCC 4352 were 99.9%. In addition, the antibiosis was enhanced when the mordant was used. The far infrared was 86.6% of emissivity, $3.34{\times}10^2\;W/m^2{\cdot}{\mu}m$ emission power.

  • PDF

A Study on the Surface Activity and Detergency of the Soap Made from the Waste Oil from Food Manufacturing Proces (식품가공폐유를 이용한 비누의 계면활성과 세척성에 관한 연구)

  • 정명섭;유덕환
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.18 no.5
    • /
    • pp.661-673
    • /
    • 1994
  • We have gathered a fatty acid to recycle the waste oil of food manufacturing process, and then made a soap from the waste oil by alkali saponification. Effects of the washing elements such as the concentration of the soap, temperature and time were evaluated to find out the optimum washing conditions, and results are as follows. 1. We could find soaps made from the soybean oil (A), corn oil (B), rape seed salad oil (C), cotton seed oil (D) and a soap consisting of the each oil 25% respectively (I) had the lowest surface tension at the concentration of 0.225% -0.25%. Compared with the single fatty-acid soap, the multi-component soap I showed the lower surface tension at the cmc. 2. All the samples of A-I showed the lowest contact angle for the solid material at the concentration of 0.25%. The multi-component soap of I showed higher contact angle than the single.component soaps of A, B, C and D. 3. The soap G, made from the waste oil, show lower surface tension than 5, made from the complex raw fats of the eatable fatty oil acid and H, commercial soap. 4. The washing efficiency depends on the washing time. Especially the 25-minute was found to be the optimum washing time. 5. The highest washing efficiency was found at the 0.25% cont. reagardless of the washing temperature. At 0.15% concentration level the washing efficiency reduces as washing tem- perature increases. At 0.3% concentration level the highest washing efficiency was found between $50^{\circ}$-$60^{\circ}$. 6. The soap made from the waste oil showed the highest washing efficiency in terms of concentration, temperature, and time. 7. The soap made from the waste oil showed the similiar concentration of hydrogen ion to the synthetic detergent. 8. The hand value of the fabric washed by the soap made from the waste oil was a little lower value than those washed by the synthetic detergent.

  • PDF

Shrinkproof Effect and Property of Shrinkproof-Finished Wool Knit

  • Park Myung-Ja;Kwak Soo-Kyoung
    • The International Journal of Costume Culture
    • /
    • v.7 no.2
    • /
    • pp.103-111
    • /
    • 2004
  • The shrinkproof-finished wool fibers treated with resin coating and chlorination methods were used to find out an optimal shrinkproof finishing method keeping the quality properties of wool fabric to manufacturers. Shrinkage during repeated washing, electrostatic propensity, thermal resistance and pilling propensity of shrinkproof-finished wool knits, and analysis of finishing methods were measured. Upon the results from the surface examination of shrinkproof-finished wool fibers, the patterns of scale layer and degree of scale removal were subject to change according to the finishing processes. The shrink resistance was significantly enhanced on repeated washing of shrinkproof-finished knits, especially, chlorinated wool. Addition of strong physical force and alkali detergent applied in this washing experiment brought about superior effects with the low shrinkage rate although it was very severe washing conditions for wool fabrics. The results from the washing experiment implies that shrinkproof-finished knitted fabrics can be machine washed at individual households with other ordinary laundry. There was some changes and variation found in thermal resistance, electrostatic propensity, and pilling, however, it seems to be minor within standard limits. Therefore, shrinkproof-finished knitted fabrics did not bring serious changes to other physical properties comparing with original wool, which helps consumers handle wool knitted clothes more conveniently.

  • PDF

Shrink-Resist Effects and Properties of the Knitted Fabrics from Wool/Acrylic Fiber Blends (양모/아크릴 혼방사 편성물의 방축 효과 및 물성에 관한 연구)

  • Lee Youn-Hee;Kwak Soo Kyoung;Park Myung-Ja
    • The Research Journal of the Costume Culture
    • /
    • v.12 no.6 s.53
    • /
    • pp.945-952
    • /
    • 2004
  • Shrink-resist effects and properties of the knitted fabrics from wool/acrylic(W/A) fiber blends were determined to find out an optimal blending ratio keeping the quality properties of wool products. The test fabrics were knitted by a weft knitting machine with all needle knitting structure ($0{\times}0$ rib) under the same knitting conditions with five different types of yarns: $W100\%,\;A100\%$, and W/A blended yarns(70/30, 50/50, 30/70). Shrinkage during repeated washing, electrostatic propensity, thermal resistance and pilling propensity of W/A knits. The shrink resistance was significantly enhanced on repeated washing of W/A knits, especially, over $50\%$ acrylic blended knits. Addition of strong physical force and alkali detergent applied in this washing experiment brought about superior effects with the low shrinkage rate although it was very severe washing conditions for wool fabrics. The results from the washing experiment implies that W/A blend knits can be machine washed at individual households with other ordinary laundry. There was some changes and variation found in thermal resistance, electrostatic propensity, and pilling. W/A 50/50 blended knits did not bring serious changes to other physical properties comparing with original wool, which helps consumers care wool knitted clothes more conveniently.

  • PDF

Effects of Treatment of Cellulase and Alkali on Physical Properties and Dyeability of Ramie/Man-Made Fiber Mixture Fabrics (셀룰라아제와 알칼리 처리에 의한 저마/인조섬유 교직물의 물성과 염색성 변화)

  • 김순심;최종명
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.5
    • /
    • pp.891-900
    • /
    • 2001
  • The purpose of this study were to evaluate the physical properties and dyeability of cellulase and alkali(NaOH, KOH) treated ramie/man-made fiber mixture fabrics. The mixture fabrics were plain weave made by rayon and polyester fiber as warp yarn, and ramie as weft yarn. The crease resistance, drape, tensile strength, and water absorbancy were measured for test fabrics. The K/S value of dyed fabrics were calculated using color difference meter. Also colorfastness to washing and sunlight of dyed fabrics were evaluated. The results obtained from this study were as follows: Thickness and weight per unit area of alkali treated two mixture fabrics(rayon/ramie, polyester/ramie) increased compared to those of untreated fabrics, but cellulase treated fabrics did not changed a little. And alkali treated rayon/ramie mixture fabrics showed more change than polyester/ramie mixture fabrics on the thickness and weight. Tensile strength and water absorbancy of cellulase treated fabrics decreased compared to those of untreated, but crease resistance increased. Crease resistance, tensile strength(warp direction), water absorbancy and drape of NaOH treated rayon/ramie mixture fabrics decreased compared to those of untreated, but tensile strength(weft direction) increased. Water absorbancy and drape of NaOH treated polyester/ramie mixture fabrics decreased compared to those of untreated, but crease resistance and tensile strength(weft direction) increased. Tensile strength of KOH treated two mixture fabrics increased compared to that of untreated, but water absorbancy and drape decreased. Total hand of cellulase and alkali treated rayon/ramie mixture fabrics was improved compared to untreated. Dyeability of treated mixture fabrics was increased compared to untreated.

  • PDF