• Title/Summary/Keyword: alkali hydrolysis

Search Result 117, Processing Time 0.025 seconds

Studies on the Enzymatic Hydrolysis of Lignocellulosic Materials for the Alternative Fuels (II) - The Effect of Delignification Treatment on the Enzymatic Hydrolysis of Steam - Exploded Woods - (대체연료(代替燃料) 생산(生産)을 위한 목질재료(木質材料)의 가수분해(加水分解)에 관한 연구(硏究)(II) - 탈(脫)리그닌처리가 폭쇄처리재(爆碎處理材)의 효소적(酵素的) 당화(糖化)에 미치는 영향(影響) -)

  • Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.18-25
    • /
    • 1990
  • As polysaccharides in lignocellulosic materials are encrusted with aromatic lignin molecules and have high crystallinity, these require pretreatment to improve their digestability by cellulolytic enzymes. Though a number of pretreatment methods have been proposed, the steam explosion process is evaluated as a promising method. This study was performed to investigate the effect of delignification treatment by alkali, methanol and the others on the enzymatic hydrolysis. Delignification treatment resulted in great increase rate in enzymatic hydrolysis. Concerning to the effect of delignication reagents on the enzymatic hydrolysis, methanol treatment was more effective than alkali in the case of oak wood. In pine wood, the delignification did not showed any significant enhancement of hydrolysis rate. Complete delignification by Alkali-Oxygen. Alkali treatment showed high saccharification rate of 99.5%.

  • PDF

Autohydrolysis and Enzymatic Saccharification of Lignocellulosic Materials(III) - Recycling and Reutilization of Cellulase Enzyme - (목질 재료의 자기가수분해 및 효소당화에 관한 연구 (Ⅲ) - Cellulase 효소의 회수 및 재사용 -)

  • Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.45-51
    • /
    • 1989
  • A major problem in the enzymatic hydrolysis of lignocellulosic substrates is the very strong bonding of cellulase to lignin and even cellulose in the hydrolysis residues. This phenomenon inhibits recycle of the cellulase which is a major expense of the enzymatic hydrolysis process. In this paper, autohydrolyzed wood was delignified by two-stage with a 0.3% Na OH extraction and oxygen-alkali bleaching and was subjected to enzymatic hydrolysis with cellulase. Also, an improved almost quantitative recycle process of cellulase enzyme was discussed. In enzyme recovery by affinity method. the first recycling showed relatively high hydrolysis rate of 97.4%. Even at the third recycle. hydrolysis rate was 86.7 percents. In the case of cellulase recovery by ultrafiltration method, first 2 recycling treatments resulted very high hydrolysis rate(97.0-97.7%). Even the third recycling showed about 94.2%. Authoydrolysis of oak wood followed by 2-stage delignification with alkali and oxygen-alkali produced a substrate for enzymatic hydrolysis that allowed almost quantitative recycle of cellulase.

  • PDF

Alkaline Hydrolysis of Polyester/Acetate Union Fabric (폴리에스테르/아세테이트 혼용직물의 알칼리 가수분해)

  • Ju, Young Min;Kim, Myung Kyoon;Ahn, Kyoung Ryoul;Lee, Jeong Min
    • Textile Coloration and Finishing
    • /
    • v.8 no.4
    • /
    • pp.42-51
    • /
    • 1996
  • Alkaline hydrolysis to improve the hand of PET/acetate union fabric was studied in relation to skin saponification and retarding effect of salts on the alkaline hydrolysis of cellulose acetate fiber, accelerating effect of salts on the alkaline hydrolysis of PET fiber, and changes of total hand value(T.H.V) of PET/acetate union fabric treated with alkali/salt solution. It was found that the rate of saponification of acetate was delayed by the addition of salts such as LiCl, NaCl and CH$_{3}$COONa into NaOH solution below 10 minutes. The rate of shrinkage of acetate fabric treated with 5g/l NaOH solution at 9$0^{\circ}C$ and 60 minutes showed 20 % but it was decreased 8% by. the addition of 120g/l Concentration of inorganic salts. We could know that the rate of alkaline hydrolysis of filament yarn treated with alkali solution at 9$0^{\circ}C$ and 60 minutes was delayed about 3 % using 2,000T/M of hard twist yarn, especially acetate filament treated with alkali solution at 9$0^{\circ}C$ and 10 minutes was delayed about 10%. T.H.V. of PET/acetate union fabric was increased from 2.77 to 3.04~3.18 by the addition of salts into alkali solution.

  • PDF

Studies on the Enzymatic Hydrolysis of Lignocellulosic Materials for the Alternative Fuels(III) - Quantitative Recycling of Cellulase Enzyme in the Enzymatic Hydrolysis of Steam-Exploded Woods - (대체연료(代替燃料) 생산(生産)을 위한 목질재료(木質材料)의 가수분해(加水分解)에 관한 연구(硏究) (III) - 폭쇄(爆碎)처리재의 산소분해시(酸素分解時) Cellulase 산소(酸素)의 정량적(定量的) 회수(回收)에 관하여 -)

  • Cho, Nam-Seok;Lim, Chang-Suk;Lee, Jae-Sung;Park, Shin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.14-21
    • /
    • 1991
  • Steam-exploded woods were delignified by two-stage with a 0.3% NaOH extraction and oxygen-alkali bleaching and were subjected to the enzymatic hydrolysis with cellulase enzyme. Also, an improved almost quantitative recycle process of cellulase enzyme was discussed. In enzyme recovery by affinity method, The first recycling showed relatively high hydrolysis rate of 96.4%. Even at the third recycle, hydrolysis rate was 87.0 percents. In the case of cellulase recovery by ultrafiltration method, first 2 recycling treatments resulted in very high hydrolysis rates, 96.8% and 95.0%, respectively. Even the third recycling showed about 93.6%. Steam-explosion treatment of oak wood followed by 2-stage delignification with alkali and oxygen-alkali produced a excellant substrate for the enzymatic hydrolysis that allowed almost quantitative recycle of cellulase.

  • PDF

Kinetics and Mechanism for Alkaline Hydrolysis of Dinitrothiophene Disperse Dye(C. I. Disperse Green 9) (디니트로티오펜계 분산염료인 C. I. Disperse Green 9의 알칼리 가수분해 반응속도 및 반응메카니즘)

  • Park, Geon-Yong;Kim, Jae-Hyoun
    • Textile Coloration and Finishing
    • /
    • v.19 no.4
    • /
    • pp.18-25
    • /
    • 2007
  • Kinetics and mechanism for alkaline hydrolysis of C. I. Disperse Green 9(G-9) of dinitrothiophene disperse dye were investigated. As soon as G-9 contacted with alkali, instant and continuous decreases of color strength of G-9 followed with increasing time. The hydrolysis rate of G-9 increased with increasing alkali, and it was found that alkali appeared first order dependence. The observed rate constants obtained from hydrolysis of various amount of dye were similar values, and calculation of initial rates showed that G-9 hydrolyzed by first order reaction for dye. Therefore it was confirmed that the overall reaction was second order, $SN_2$ of nucleophilic substitution reaction. Increasing temperature enhanced the hydrolysis of G-9. From the results of hydrolysis performed at various temperatures, it was obtained that activation energy(Ea) was 12.6 kcal/mole, enthalpy of reaction(${\triangle}H$) was 12.0 kcal/mole, and entropy of reaction(${\triangle}S$) was $29.8J/mol{\cdot}K$.

Formation of Furans during the Acid Hydrolysis of Agar and Their Removal by Treatments of Lime, Steam-stripping and Hydrophobic Resins (한천의 산 당화에 의한 Furan화합물의 생성 및 제거)

  • Kim, Na-Hyun;Lee, Jae-Won;Seo, Yung-Bum;Yoon, Min-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.36 no.2
    • /
    • pp.225-232
    • /
    • 2009
  • The ratio of saccharification and formation of furans during the acid hydrolysis of agar with oxalic acid and sulfuric acid were examined base on the contents of the agar and acids. The ratio of saccharification in oxalic acid appeared to be 51~59% somewhat higher than 49~61% of sulfuric acid. Formation of the furans during the acid hydrolysis increased proportional to the contents of agar and acid. The relative formation ratio was high 10~47% for furfural (FUR) and 15~29% for hydroxy-methyl furfural (HMF) in 0.5~1.25% sulfuric acid rather than those of oxalic acid. When comparing the removal efficiency of the furans using an alkali treatment, steam stripping and hydrophobic resins, FUR was eliminated 60% by the alkali treatment, 62~90% by steam stripping and 71~75% by Amberlite XAD4 and 7HP, while HMF was removed to low levels of 10.5%, 4~17% and 13~25%, respectively. The loss of reducing sugar was also observed in process of the removal of furans, and the loss rate was the level of 2~4% in alkali treatment, 11~16% in steam stripping and 7~9% in Amberlite resins.

  • PDF

3-MCPD Concentrations in Commercial Korean Soy Sauces Produced by Alkali Treatment Following Acidic Hydrolysis

  • Cho, Woo-Jin;Kim, Hun;Jeong, Eun-Jeong;Lee, Young-Mi;Park, Sung-Young;Kim, Hyounjin;Lee, Jung-Suck;Nam, Gi-Jin;Cha, Yong-Jun
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.4
    • /
    • pp.451-453
    • /
    • 2002
  • Alkali treatment following acidic hydrolysis (ATAH) of defatted soybean is currently used to reduce the level of 3-chloropropane-1,2-diol (3-MCPD), a known carcinogen, in commercial Korean soy sauce. 3-MCPD concentrations in commercial soy sauces made by ATAH were compared with those made only by acidic hydrolysis, and products that combine soy sauce made by acid hydrolysis (followed by alkalinization) and enzymatic methods. The four soy sauces made by ATAH had lower 3-MCPD concentrations (below 0.078 ppm) than 4 commercial products (0.147∼0.481 ppm) made only by acidic hydrolysis. On the other hand, 3-MCPD concentrations in 4 commercial products made by combining soy sauces made enzymatically with that made from acid (with alkali treatment)-hydrolyzed soybean protein in varying ratios were in a range of 0.016∼0.053 ppm. The 3-MCPD concentrations in commercial Korean soy sauces, with the exception of 2 of the soy sauces made only by acidic hydrolysis, were lower than allowable limit of 0.3 ppm in Korea. These results demonstrated that currently produced commercial soy sauces on the Korean market hate toxicologically save 3-MCPD concentrations. It is also provides evidence that ATAH is an effective process for reducing 3-MCPD concentrations in commercial soy sauce.

Hydrolysis of Silk Fibroin on Alkali Conditions (견 피브로인의 알칼리 가수분해)

  • 김남정;배도규
    • Journal of Sericultural and Entomological Science
    • /
    • v.39 no.2
    • /
    • pp.197-202
    • /
    • 1997
  • To hydrolyze silk fibroin was treated with NaOH solution on various concentrations and times. And it was examined that the addition effects of NaHSO3 solution on the solubility and colouring of silk fibroin. As obtained results are as follows; The more increasement of concentration and time of NaOH treatment, the more increasement of solubility but solubility was slight above 3% concentration of NaOH. Fibroin yield was decreased above 3% concentration. This was due to formation of peptide or amino acids below molecular weight 3,000. Most of molecular weight distribution came out to be under 3,000 in 2% concentration and 4hrs of NaOH treatment. The more increasement of adding concentration and 4hrs of NaOH treatment. The more increasement of adding concentration of NaHSO3, the more reduction of solubility but white index of powder increased. In the results of FT-IR spectras of silk fibroin powder obtained by various concentrations of NaHSO3 treatment, the absorbent peak at 3,400 cm-1 which was considered as -CH=N- (azomethine) was disappeared by the more addition of NaHSO3. It showed that absorbent peak of $\beta$-fibroin moved into low temperature region and transferred to $\alpha$- and random coil structure through the DSC experiment. In the results of amino acid analysis, alkali hydrolysis reduced the oxy amino contents acid like serine and tyrosine, but increased the glycine content by the more addition of NaHSO3.

  • PDF

A Study on the Alkali Hydrolysis of PET fabric with Ultrasonic Application(I) - Decomposition Rate Constant and Activation Energy - (초음파를 적용한 PET 직물의 알칼리 가수분해에 관한 연구(I) - 분해속도상수와 활성화 에너지-)

  • 서말용;조호현;김삼수;전재우;이승구
    • Textile Coloration and Finishing
    • /
    • v.14 no.4
    • /
    • pp.214-222
    • /
    • 2002
  • In order to give a silk-like touch to PET fabrics, the PET fabrics were treated with NaOH alkaline solution in various conditions. In alkaline treatment, the liquor flow type pilot weight reduction apparatus with magnetostrictive ultrasonic transducer was used for the study. The weight loss of PET fabrics hydrolyzed in 4% and 6% NaOH solution, at $95^\circ{C}$ and $99^\circ{C}$ for 60min. with ultrasonic application showed 3.7~4.6% higher than that of treated fabric without ultrasonic application. From the difference of specific weight loss, the treatment condition of the maximum of hydrolyzation effect appeared at $95^\circ{C}$ in $4^\circ{C}$ and at $90^\circ{C}$ in 6% NaOH solution, respectively. During the alkali hydrolysis of PET fabrics, the decomposition rate constant(k) increased exponentially with the treatment temperature and were not related with ultrasonic cavitation. The activation energy$(E_a)$ in decomposition of PET fabrics were 21.06kcal/mol with ultrasonic application and 21.10kcal/mol without ultrasonic application. The ultrasonic application gave a little higher value of the activation entropy$(\Delta{S}^\neq)$ and a little lower value of Gibbs free energy$(\Delta{S}^\neq)$ compared with not used ultrasonic apparatus.

A Study on the Alkali Hydrolysis of Sea-island PET Ultra-microfiber (해도형(海島型) PET 초극세섬유의 알칼리 가수분해에 관한 연구)

  • Seo, Mal Yong;Lee, Jun Hee;Ok, Chi Min;Cho, Seong Hun;Lee, Jong Woo;Cho, Ho Hyun
    • Textile Coloration and Finishing
    • /
    • v.25 no.4
    • /
    • pp.303-313
    • /
    • 2013
  • Alkali hydrolysis of sea-island PET 0.02denier microfiber were compared to those on the fabrics of the 0.06denier microfiber. In the dissolution of the sea component out of sea island type ultra-microfiber, it is important to determine the optimum division and divided material. Weight reduction of sea island ultra-micro sea island fiber was faster than regular PET about 10 times. Also 0.2denier sea-island ultra-micro sea island fiber has better color fastness (washing, friction, and daylight) than 0.06denier level sea-island ultra-microfiber. In this study, 0.2denier ultra-micro sea island fiber shows the possibility of high value product.