• Title/Summary/Keyword: alkali activated concrete

Search Result 116, Processing Time 0.023 seconds

Effects of Basicity on the Carbonation Characteristics of Alkali-Activated Slag Mortar (염기도가 알칼리 활성고로슬래그 모르타르의 탄산화에 미치는 영향)

  • Song, Keum-Il;Lee, Bang-Yeon;Hong, Geon-Ho;Gong, Min-Ho;Song, Jin-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.577-584
    • /
    • 2012
  • Carbonation resistance is one of the most influencing factors on durability of concrete. Alkali activated slag (AAS) is known to have weaker resistance for carbonation than OPC due to the low calcium contents. In this paper, the carbonation characteristic of AAS mortar which is related to the basicity (CaO/$SiO_2$) was investigated. In order to give the various basicity conditions, SM (source material) was blended with quicklime (CaO) and silicon dioxide ($SiO_2$) by adopting mechano-chemical treatment method. Experiments including flow test, compressive strength test, carbonation depth test, together with XRD, FTIR and TGA were employed to evaluate the effects of basicity of SM on the carbonation characteristics. The test results showed that the carbonation resistance effectively increased with the increase of the basicity of SM.

Validation of Test Methods for Chloride Penetration Durability of Alkali Activated Slag (알칼리 활성 슬래그의 염해 내구성 평가 시험 방법 유효성)

  • Lim, Min-Hyuk;Lee, Do-Keun;Shin, Kyung-Joon;Song, Keum-Il;Song, Jin-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Recently, studies on alkali activated slag(AAS) binders that do not use cement have been actively conducted. It is known that AAS concrete is highly resistant to chloride damage based on the test method used for ordinary concrete. However, it is fully not understood whether the test method used for concrete can be applied to AAS mixtures. Therefore, in this study, we verified the consistency of NT Build 492 and ASTM C 1202 test methods by applying various experimental variables. According to the experimental results, the two tests yielded opposite results. Therefore, the chloride durability of AAS mortar can be different depending on the evaluation method.

Influence of Silica Fume on Strength Properties of Alkali-Activated Slag Mortar (실리카 퓸이 알칼리 활성화 슬래그 모르타르의 강도특성에 미치는 영향)

  • Kim, Tae-Wan
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.305-312
    • /
    • 2013
  • This paper reports the results of an investigation into the effects of silica fume on strength properties of alkali-activated slag cement (AASC) with water-binder (W/B) ratio and replacement ratio of silica fume content. The W/B ratio varied between 0.50 and 0.60 at a constant increment of 0.05. The silica fume content varied from 0% to 50% by weight of slag. The activators was used sodium hydroxide (NaOH) and the dosage of activator was 3M. The strength development with W/B ratio has been studied at different ages of 1, 3, 7 and 28 days. For mixes of AASC mortars with varying silica fume content, the flow values were lower than the control mixes (without silica fume). The flow value was decrease as the content of silica fume increase. This is because the higher surface areas of silica fume particles increase the water requirement. The analysis of these results indicates that, increasing the silica fume content in AASC mortar also increased the compressive strength. Moreover, the strength decreases with the W/B ratios increases. This is because the particle sizes of silica fume are smaller than slag. The high compressive strength of blended slag-silica fume mortars was due to both the filler effect and the activated reaction of silica fume evidently giving the mortar matrix a denser microstructure, thereby resulting in a significant gain in strength.

Basic Properties of Alkali-activated Mortar With Additive's Ratio and Type of Superplasticizer (감수제 종류 및 첨가율 변화에 따른 알칼리 활성 모르타르의 기초적 특성)

  • Han, Cheon-Goo;Chang, Ji-Han
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.50-57
    • /
    • 2015
  • Portland cement production is under critical review due to high amount of $CO_2$ gas released to the atmosphere. Attempts to increase the utilization of a by-products such as fly ash and ground granulated blast-furnace slag to partially replace the cement in concrete are gathering momentum. Many researchs on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. Instead, the sources of material such as fly ash, that are rich in Silicon(Si) and Aluminium(Al), are activated by alkaline liquids to produce the binder. Hence concrete with no cement is effect reduction of $CO_2$ gas. In this study, we investigated the influence of the fluidity, air content and compressive strength of mortar on alkaline activator in order to develop cementless fly ash and ground granulated blast-furnace slag based alkali-activated mortar with superplasticizer. In view of the results, we found out that Pn of fluidity and compressive strength is the best in four type of superplasticizer, and PNS of powder type of fluidity is better than that of liquid type in the case of AA.

Green Technology in Concrete Industry : Geopolymer Concrete

  • Nguyen, Khoa Tan;Le, Tuan Anh;Ahn, Namshik
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.115-116
    • /
    • 2011
  • TNowadays, the global warming is the most serious problem in the world and the cement industry is one of the factors which are responsible for it. Therefore, the development of new binders with enhanced environment and durability performance is needed. In this regard, the geopolymer technology is one of the breakthrough developments as an alternative to the portland cement. This paper shows some points of view on the development of geopolymers by reviewing previous researches including historical background, constituents of geopolymers, process of geopolymerization and several applications of geopolymer. Hence, the author proposes two research trends which are finding the best combination between the source materials and alkali liquid then, evaluating the corrosion for the metal bars.

  • PDF

Preliminary Study for the Development of Alkali Activated Natural Hwangtoh Binder (알칼리활성 천연황토 결합제 개발을 위한 기초연구)

  • Kim, Baek-Joong;Kim, Jun-Hwan;Yi, Chong-Ku;Kang, Kyung-In
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.389-390
    • /
    • 2010
  • this study is preliminary experimental research for develop methods to utilize the natural Hwangtoh as replacement materials for the cement in concrete, via alkali activation at $60^{\circ}C$ using NaOH solution and liquefied $Na_2SiO_3$ in a manufacture process of Hwangtoh concrete binder.

  • PDF

The Effect on the Alkali-Activator Mixing Ratio of Cementless Mortar Using Fly Ash and Blast Furnace Slag (알칼리 활성화제 혼합비가 플라이애시와 고로슬래그를 사용한 무시멘트 모르타르에 미치는 영향)

  • Kang, Hyun-Jin;Ko, Kyung-Taek;Ryu, Gum-Sung;Kang, Su-Tae;Park, Jung-Jun;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.315-316
    • /
    • 2010
  • The purpose of this study is to observe the effect of mixture ratio of alkali-activator on workability and compressive strength of alkali-activated mortar that using fly ash and blast furnace slag.

  • PDF

Effect of Adding Gypsum in Blast-Furnace-Based Mortar's Fundamental Properties (이수석고가 고로슬래그 미분말 활용 무시멘트 모르타르의 기초물성에 미치는 영향)

  • Lu, Liang Liang;Kim, Jun Ho;Park, Jun Hee;Huang, Jin Guang;Baek, Byung Hoon;Han, Cheon Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.137-138
    • /
    • 2013
  • Nowadays, research about using recycled aggregate as alkali activator has been investigated. By the mechanism of Alkali activation, blast furnace slag's potential hydraulis property would be activated. Thee application of this technique is considered as fit for low strength concrete, so it's suitable in concrete secondary production such as bricks and blocks. Aside alkali activator, sulfate could also activate blast furnace slag's potential hydranlis property. In this research, gypsum(CaSO4·2H2O)has been added with blast furnace slag. Fundamental experiment such as flow and strength has been tested to evalnate effect of gypsum's activation property.

  • PDF

Properties of Alkali Activated MSWI (Municipal Solid Waste Incinerator) Ash Mortar (알칼리 활성화된 도시 폐기물 소각재 모르타르의 특성)

  • Jo Byung Wan;Koo Ja Kap;Park Seung Kook;Ko Hee Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.773-776
    • /
    • 2005
  • MSWI ash is the residue from waste combustion processes at temperature between $850^{\circ}C\;and\;1000^{\circ}C$. And the main components of MSWI ash are $SiO_2,\;CaO\;and\;Al_2O_3$. The aim of this study is to find a way to useful application of MSWI ash(after treatment) as a structural material and to investigates the hydraulic activity, compressive strength development, composition variation of such chemicallyi-activated MSWI ashes concrete. And it was found that early cement hydration, followed by the breakdown and dissolving of the MSWI-ashes, enhanced the formation of calcium silicate hydrates(C-S-H), The XRD and SEM-EDS results indicate that, both the hydration degree and strength development are closely connected with a curing condition and a chemically-activator. Compressive strengths with values in the 40.5MFa were obtained after curing the activated MSWI ashes with NaOH+water glass at $90^{\circ}C$.

  • PDF

Application of Alkali-Activated Ternary Blended Cement in Manufacture of Ready-Mixed Concrete (알칼리 활성화 3성분계 혼합시멘트의 레미콘 적용 시험)

  • Yang, Wan-Hee;Hwang, Ji-Soon;Lee, Sea-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.47-54
    • /
    • 2017
  • Cement industry is typical carbon-emission industry. If the industrial by-products(granulated blast-furnace slag (GGBFS), fly ash, etc.) are used a large amount, it might be able to reduce cement consumption and mitigate carbon emissions. In this case, however, decrease of early strength is relatively large. Therefore, there is a limitation in increase of the amount of substitute. Considering these circumstances, it would be a good solution to reduce carbon emissions in cement industry to improve the performances of mixed cement through proper alkali-activation in Portland blended cement using GGBFS or fly ash. Therefore, this study prepared concrete in ready-mixed concrete manufacturing facilities with an addition of a binder which used 2.0% modified alkali sulfate activator after mixing Portland cement, GGBFS and fly ash in the ratio of 4:4:2 and assessed its basic properties. The results found the followings: The use of modified alkali-sulfate activator slightly reduced slump and shortened setting time. As a result, bleeding capacity decreased while early strength improved. In addition, there is no big difference in carbonation resistance. It appears that there should be continued experiments and analyses on the related long-term aged specimens.