• Title/Summary/Keyword: alkali activated concrete

Search Result 116, Processing Time 0.031 seconds

Study on the Fire Resistance of Light Weight Inorganic Polymer Concrete Panel Wall (Inorganic Polymer Concrete를 이용한 경량패널의 내화특성에 관한 실험적 연구)

  • Hwang, Ji-Soon;Kim, Woo-Jae;Kim, Dae-Hoi;Park, Dong-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.205-206
    • /
    • 2011
  • Inorganic Polymer Concrete, a type of Alkali activated cement and concrete, is known for various excellent performances, especially for better performance in the area of high temperature heat resistance(thermal characteristic) than portland cement concrete.In this study, light weight concrete panel was manufactured using this Inorganic Polymer Concrete and then evaluated for fire resistance with a small-scale heating furnace. Since the result showed excellent fire resistance, it is considered usable for manufacturing fire resistant concrete panel wall.

  • PDF

Practical Application of GGBS-Based Alkali-Activated Binder to Secondary Products of Concrete (고로슬래그 기반 알카리 활성 결합재의 콘크리트 2차 제품 적용성 평가)

  • Sim, Jae-Il;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.5
    • /
    • pp.37-44
    • /
    • 2010
  • This study examined the practical application of ground granulated blast-furnace slag (GGBS) based alkali-activated (AA) binders for the development of cementless environmental-friendly secondary products of concrete, such as brick, shore protection blocks and interlocking blocks. The addition amount and type of alkaline ion to activate GGBS varied according to the diverse qualities of the secondary products of concrete required in Korean industrial standards (KS) and other specifications. Test results showed that the secondary products of concrete using GGBS-based AA binders surpassed the demanded capacities of KS and other specifications. In addition, shore protection block had a pH value close to neutral, enabling an advantageous environment for marine life. Therefore, the GGBS-based AA binders can be effectively applied to develop eco-friendly secondary products of concrete with reduced $CO_2$.

An Experimental Study on the Chloride Attack Resistibility of Alkali-Activated Ternary Blended Cement Concrete (알칼리 활성화 3성분계 혼합시멘트의 염해 저항성에 관한 실험적 연구)

  • Yang, Wan-Hee;Hwang, Ji-Soon;Jeon, Chan-Soo;Lee, Sea-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.321-329
    • /
    • 2016
  • The use of ternary blended cement consisting of Portland cement, granulated blast-furnace slag (GGBFS) and fly ash has been on the rise to improve marine concrete structure's resistance to chloride attack. Therefore, this study attempted to investigate changes in chloride attack resistibility of concrete through NT Build 492-based chloride migration experiments and test of concrete's ability to resist chloride ion penetration under ASTM C 1202(KS F 2271) when 1.5-2.0% of alkali-sulfate activator (modified alkali sulfate type) was added to the ternary blended cement mixtures (40% ordinary Portland cement + 40% GGBFS + 20% fly ash). Then, the results found the followings: Even though the slump for the plain concrete slightly declined depending on the use of the alkali-sulfate activator, compressive strength from day 2 to day 7 improved by 17-42%. In addition, the coefficient from non-steady-state migration experiments for the plain concrete measured at day 28 decreased by 36-56% depending on the use of alkali-sulfate. Furthermore, total charge passed according to the test for electrical indication of concrete's ability to resist chloride ion penetration decreased by 33-62% at day 7 and by 31-48% at day 28. As confirmed in previous studies, reactivity in the GGBFS and fly ash improved because of alkali activation. As a result, concrete strength increased due to reduced total porosity.

Evaluation on the Shrinkage and Durability of Cementless Alkali-Activated Mortar (무(無)시멘트 알칼리 활성(活性) 모르타르의 수축(收縮) 및 내구성(耐久性) 평가(評價))

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa;Kang, Hyun-Jin
    • Resources Recycling
    • /
    • v.20 no.3
    • /
    • pp.40-47
    • /
    • 2011
  • In this study, we investigated the strength, shrinkage and durability of alkali-activated mortar using blast furnace slag only, and admixed with blast-furnace slag and fly ash as cementious materials in oder to develop cementless alkali-activated concrete. In order to compare with the alkali-activated mortar, the normal mortar using ordinary portland cement was also test. In view of the results, we found out that strength development, the resistance to shrinkage and freezing-thawing of the cementless alkali-activated mortar have better than the mortar using ordinary portland cement. Especially, using the combined with blast furnace slag and fly ash develop high strength of above 60 MPa, reduce shrinkage of about 40% and improve freezing-thawing durability of approximately 20%, but promote the velocity of carbonation of 2~3 times.

Strength Development Properties of Alkali-Activated Slag Mortar by Autoclave Curing (오토클레이브 양생에 의한 알칼리활성슬래그 모르타르의 강도발현 특성)

  • Song, Jin-Gyu;Kim, Byeong-Jo;Oh, Myeong-hyeon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.07a
    • /
    • pp.218-219
    • /
    • 2015
  • Precast concrete produced in the industry is advantage that easy to manage, and it save construction period in the field. The specimens according to the type of activator for AAS(Alkali-Activated Slag) mortar cured in an autoclave. The specimens of AAS mortar with sodium was shown the high rate of increase of the compressive strength.

  • PDF

Compressive Strength and Tensile Behavior of Ultra-High Performance Concrete and High-Ductile Cementless Composite (초고성능 콘크리트와 고연성 무시멘트 복합재료의 압축 및 인장성능)

  • Choi, Jeong-Il;Park, Se Eon;Lee, Bang Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.69-75
    • /
    • 2017
  • Ultra-high performance concrete and high ductile cementless composite are considered as promising construction materials because those exhibits higher performance in terms of high strength and high ductility. The purpose of this study is to investigate experimentally the compressive strength and tensile behavior of ultra-high performance concrete and high ductile cementless composite. A series of experiments including density, compressive strength, and uniaxial tension tests were performed. Test results showed that the compressive strength and tensile strength of alkali-activated slag based high ductile cementless composite were lower than those of ultra-high performance concrete. However, the tensile strain capacity and toughness of alkali-activated slag based high ductile cementless composite were higher than those of ultra-high performance concrete. And it was exhibited that a high ductility up to 7.89% can be attainable by incorporating polyethylene fiber into the alkali-activated slag based cementless paste.

Properties of the Flowability and Strength of Cementless Alkali-Activated Mortar Using the Mixed Fly Ash and Ground Granulated Blast-Furnace Slag (플라이애쉬와 고로슬래그 미분말의 혼합 사용한 무시멘트 알칼리 활성 모르터의 유동성 및 강도 특성)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.114-121
    • /
    • 2010
  • Portland cement production is under critical review due to high amount of CO2 gas released to the atmosphere. Attempts to increase the utilization of a by-products such as fly ash and ground granulated blast-furnace slag to partially replace the cement in concrete are gathering momentum. But most of by-products is currently dumped in landfills, thus creating a threat to the environment. Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. However, most study deal only with alkali-activated ground granulated blast furnace slag or fly ash, as for the combined use of the both, little information is reported. In this study, we investigated the influence of mixture ratio of fly ash/ blast furnace slag tand curing condition on the flowability and compressive strength of mortar in oder to develop cementless alkali-activated concrete. In view of the results, we found out that the mixture ratio of fly ash/blast furnace slag always results to be significant factors. But the influence of curing temperature in the strength development of mortar is lower than the contribution due to other factors. At the age of 28days, the mixture 50% fly ash and 50% ground granulated blast furnace slag activated with 1:1 the mass ratio of 9M NaOH and sodium silicate, develop compressive strength of about 65 MPa under $20^{\circ}C$ curing.

  • PDF

Effect of the Combined Using of Fly Ash and Blast Furnace Slag as Cementitious Materials on Properties of Alkali-Activated Mortar (결합재(結合材)로 플라이애시와 고로(高爐)슬래그의 혼합사용(混合使用)이 알칼리 활성(活性) 모르타르의 특성(特性)에 미치는 영향(影響))

  • Koh, Kyung-Taek;Kang, Su-Tae;Park, Jung-Jun;Ryu, Gum-Sung;Lee, Jang-Hwa;Kang, Hyun-Jin
    • Resources Recycling
    • /
    • v.19 no.4
    • /
    • pp.19-28
    • /
    • 2010
  • Attempts to increase the utilization of a by-products such as fly ash and blast furnace slag to partially replace the cement in concrete are gathering momentum. But most of by-products is currently dumped in landfills, thus creating a threat to the environment. Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. However, most study deal only with alkali-activated blast furnace slag or fly ash, as for the combined use of the both, little information is reported. In this study, we investigated the influence of mixture ratio of fly ash/slag, type of alkaline activator and curing condition on the workability and compressive strength of mortar in oder to develop cementless alkali-activated concrete. In view of the results, we found out that the mixture ratio of fly ash/slag and the type of alkaline activator always results to be significant factors. But the influence of curing temperature in the strength development of mortar is lower than the contribution due to other factors. At the age of 28days, the mixture 50% fly ash and 50% slag activated with 1:1 the mass ratio of 9M NaOH and sodium silicate, develop compressive strength of about 65 MPa under $20^{\circ}C$ curing.

Development of Manufacturing Technology of Non-Sintered Inorganic Using Alkali-activated Fly-ash (알칼리 활성화 플라이애쉬를 사용한 비소성 무기결합재의 제조기술 개발)

  • Jung, Suk-Jo;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.753-756
    • /
    • 2005
  • Recently, the alkali activation of Fly-ash has become a significant field of research because it is possible to use these materials having highly chemical reaction property. Also, the product does not generate CO2 gas, unlike ordinary Portland cement(O.P.C). Therefore, the purpose of this paper is to design for improving mechanical and chemical properties using Fly-ash and Meta-kaolin. And additive(CaO) affected to control the strength behaviors and shrinkage rate.

  • PDF

A study on mechanical properties of concrete including activated recycled plastic waste

  • Ashok, M.;Jayabalan, P.;Saraswathy, V.;Muralidharan, S.
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.207-215
    • /
    • 2020
  • This paper describes the experimental studies carried out to determine the properties of fresh and hardened concrete with Recycled Plastic Waste (RPW) as a partial replacement material for fine aggregates. In the experimental study, RPW was used for replacing river sand and manufactured sand (M sand) aggregates in concrete. The replacement level of fine aggregates was ranging from 5% to 20% by volume with an increment of 5%. M40 grade of concrete with water cement ratio of 0.40 was used in this study. Two different types of RPW were used, and they are (i) un-activated RPW and (ii) activated RPW. The activated RPW was obtained by alkali activation of un-activated RPW using NaOH solution. The hardened properties of the concrete determined were dry density, compressive strength, split tensile strength, flexural strength and ultrasonic pulse velocity (UPV). The properties of the concrete with river sand, M sand, activated RPW and un-activated RPW were compared and inferences were drawn. The effect of activation using NaOH solution was investigated using FT-IR study. The micro structural examination of hardened concrete was carried out using Scanning Electron Microscopy (SEM). The test results show that the strength of concrete with activated RPW was more than that of un-activated RPW. From the results, it is evident that it is feasible to use 5% un-activated RPW and 15% activated RPW as fine aggregates for making concrete without affecting the strength properties.