• Title/Summary/Keyword: algorithmic

Search Result 373, Processing Time 0.024 seconds

Design and Implementation of Early Warning Monitoring System for Cross-border Mining in Open-pit Mines (노천광산의 월경 채굴 조기경보 모니터링시스템의 설계 및 구현)

  • Li Ke;Byung-Won Min
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.25-41
    • /
    • 2024
  • For the scenario of open pit mining, at present, manual periodic verification is mainly carried out in China with the help of video surveillance, which requires continuous investment in labor cost and has poor timeliness. In order to solve this difficult problem of early warning and monitoring, this paper researches a spatialized algorithmic model and designs an early warning system for open-pit mine transboundary mining, which is realized by calculating the coordinate information of the mining and extracting equipments and comparing it with the layer coordinates of the approval range of the mines in real time, so as to realize the determination of the transboundary mining behavior of the mines. By taking the Pingxiang area of Jiangxi Province as the research object, after the field experiment, it shows that the system runs stably and reliably, and verifies that the target tracking accuracy of the system is high, which can effectively improve the early warning capability of the open-pit mines' overstepping the boundary, improve the timeliness and accuracy of mine supervision, and reduce the supervision cost.

Exploring Efficient Solutions for the 0/1 Knapsack Problem

  • Dalal M. Althawadi;Sara Aldossary;Aryam Alnemari;Malak Alghamdi;Fatema Alqahtani;Atta-ur Rahman;Aghiad Bakry;Sghaier Chabani
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.15-24
    • /
    • 2024
  • One of the most significant issues in combinatorial optimization is the classical NP-complete conundrum known as the 0/1 Knapsack Problem. This study delves deeply into the investigation of practical solutions, emphasizing two classic algorithmic paradigms, brute force, and dynamic programming, along with the metaheuristic and nature-inspired family algorithm known as the Genetic Algorithm (GA). The research begins with a thorough analysis of the dynamic programming technique, utilizing its ability to handle overlapping subproblems and an ideal substructure. We evaluate the benefits of dynamic programming in the context of the 0/1 Knapsack Problem by carefully dissecting its nuances in contrast to GA. Simultaneously, the study examines the brute force algorithm, a simple yet comprehensive method compared to Branch & Bound. This strategy entails investigating every potential combination, offering a starting point for comparison with more advanced techniques. The paper explores the computational complexity of the brute force approach, highlighting its limitations and usefulness in resolving the 0/1 Knapsack Problem in contrast to the set above of algorithms.

A Method for Generating Malware Countermeasure Samples Based on Pixel Attention Mechanism

  • Xiangyu Ma;Yuntao Zhao;Yongxin Feng;Yutao Hu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.456-477
    • /
    • 2024
  • With information technology's rapid development, the Internet faces serious security problems. Studies have shown that malware has become a primary means of attacking the Internet. Therefore, adversarial samples have become a vital breakthrough point for studying malware. By studying adversarial samples, we can gain insights into the behavior and characteristics of malware, evaluate the performance of existing detectors in the face of deceptive samples, and help to discover vulnerabilities and improve detection methods for better performance. However, existing adversarial sample generation methods still need help regarding escape effectiveness and mobility. For instance, researchers have attempted to incorporate perturbation methods like Fast Gradient Sign Method (FGSM), Projected Gradient Descent (PGD), and others into adversarial samples to obfuscate detectors. However, these methods are only effective in specific environments and yield limited evasion effectiveness. To solve the above problems, this paper proposes a malware adversarial sample generation method (PixGAN) based on the pixel attention mechanism, which aims to improve adversarial samples' escape effect and mobility. The method transforms malware into grey-scale images and introduces the pixel attention mechanism in the Deep Convolution Generative Adversarial Networks (DCGAN) model to weigh the critical pixels in the grey-scale map, which improves the modeling ability of the generator and discriminator, thus enhancing the escape effect and mobility of the adversarial samples. The escape rate (ASR) is used as an evaluation index of the quality of the adversarial samples. The experimental results show that the adversarial samples generated by PixGAN achieve escape rates of 97%, 94%, 35%, 39%, and 43% on the Random Forest (RF), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Convolutional Neural Network and Recurrent Neural Network (CNN_RNN), and Convolutional Neural Network and Long Short Term Memory (CNN_LSTM) algorithmic detectors, respectively.

Research on Utilization of AI in the Media Industry: Focusing on Social Consensus of Pros and Cons in the Journalism Sector (미디어 산업 AI 활용성에 관한 고찰 : 저널리즘 분야 적용의 주요 쟁점을 중심으로)

  • Jeonghyeon Han;Hajin Yoo;Minjun Kang;Hanjin Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.713-722
    • /
    • 2024
  • This study highlights the impact of Artificial Intelligence (AI) technology on journalism, discussing its utility and addressing major ethical concerns. Broadcasting companies and media institutions, such as the Bloomberg, Guardian, WSJ, WP, NYT, globally are utilizing AI for innovation in news production, data analysis, and content generation. Accordingly, the ecosystem of AI journalism will be analyzed in terms of scale, economic feasibility, diversity, and value enhancement of major media AI service types. Through the previous literature review, this study identifies key ethical and social issues in AI journalism as well. It aims to bridge societal and technological concerns by exploring mutual development directions for AI technology and the media industry. Additionally, it advocates for the necessity of integrated guidelines and advanced AI literacy through social consensus in addressing these issues.

Analysis of Trading Performance on Intelligent Trading System for Directional Trading (방향성매매를 위한 지능형 매매시스템의 투자성과분석)

  • Choi, Heung-Sik;Kim, Sun-Woong;Park, Sung-Cheol
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.187-201
    • /
    • 2011
  • KOSPI200 index is the Korean stock price index consisting of actively traded 200 stocks in the Korean stock market. Its base value of 100 was set on January 3, 1990. The Korea Exchange (KRX) developed derivatives markets on the KOSPI200 index. KOSPI200 index futures market, introduced in 1996, has become one of the most actively traded indexes markets in the world. Traders can make profit by entering a long position on the KOSPI200 index futures contract if the KOSPI200 index will rise in the future. Likewise, they can make profit by entering a short position if the KOSPI200 index will decline in the future. Basically, KOSPI200 index futures trading is a short-term zero-sum game and therefore most futures traders are using technical indicators. Advanced traders make stable profits by using system trading technique, also known as algorithm trading. Algorithm trading uses computer programs for receiving real-time stock market data, analyzing stock price movements with various technical indicators and automatically entering trading orders such as timing, price or quantity of the order without any human intervention. Recent studies have shown the usefulness of artificial intelligent systems in forecasting stock prices or investment risk. KOSPI200 index data is numerical time-series data which is a sequence of data points measured at successive uniform time intervals such as minute, day, week or month. KOSPI200 index futures traders use technical analysis to find out some patterns on the time-series chart. Although there are many technical indicators, their results indicate the market states among bull, bear and flat. Most strategies based on technical analysis are divided into trend following strategy and non-trend following strategy. Both strategies decide the market states based on the patterns of the KOSPI200 index time-series data. This goes well with Markov model (MM). Everybody knows that the next price is upper or lower than the last price or similar to the last price, and knows that the next price is influenced by the last price. However, nobody knows the exact status of the next price whether it goes up or down or flat. So, hidden Markov model (HMM) is better fitted than MM. HMM is divided into discrete HMM (DHMM) and continuous HMM (CHMM). The only difference between DHMM and CHMM is in their representation of state probabilities. DHMM uses discrete probability density function and CHMM uses continuous probability density function such as Gaussian Mixture Model. KOSPI200 index values are real number and these follow a continuous probability density function, so CHMM is proper than DHMM for the KOSPI200 index. In this paper, we present an artificial intelligent trading system based on CHMM for the KOSPI200 index futures system traders. Traders have experienced on technical trading for the KOSPI200 index futures market ever since the introduction of the KOSPI200 index futures market. They have applied many strategies to make profit in trading the KOSPI200 index futures. Some strategies are based on technical indicators such as moving averages or stochastics, and others are based on candlestick patterns such as three outside up, three outside down, harami or doji star. We show a trading system of moving average cross strategy based on CHMM, and we compare it to a traditional algorithmic trading system. We set the parameter values of moving averages at common values used by market practitioners. Empirical results are presented to compare the simulation performance with the traditional algorithmic trading system using long-term daily KOSPI200 index data of more than 20 years. Our suggested trading system shows higher trading performance than naive system trading.

Development of Simulation Technology Based on 3D Indoor Map for Analyzing Pedestrian Convenience (보행 편의성 분석을 위한 3차원 실내지도 기반의 시뮬레이션 기술 개발)

  • KIM, Byung-Ju;KANG, Byoung-Ju;YOU, So-Young;KWON, Jay-Hyoun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.67-79
    • /
    • 2017
  • Increasing transportation dependence on the metro system has lead to the convenience of passengers becoming as important as the transportation capacity. In this study, a pedestrian simulator has been developed that can quantitatively assess the pedestrian environment in terms of attributes such as speed and distance. The simulator consists of modules designed for 3D indoor map authoring and algorithmic pedestrian modeling. Module functions for 3D indoor map authoring include 3D spatial modeling, network generation, and evaluation of obtained results. The pedestrian modeling algorithm executes functions such as conducting a path search, allocation of users, and evaluation of level of service (LOS). The primary objective behind developing the said functions is to apply and analyze various scenarios repeatedly, such as before and after the improvement of the pedestrian environment, and to integrate the spatial information database with the dynamic information database. Furthermore, to demonstrate the practical applicability of the proposed simulator in the future, a test-bed was constructed for a currently operational metro station and the quantitative index of the proposed improvement effect was calculated by analyzing the walking speed of pedestrians before and after the improvement of the passage. The possibility of database extension for further analysis has also been discussed in this study.

Theoretical Investigations on Compatibility of Feedback-Based Cellular Models for Dune Dynamics : Sand Fluxes, Avalanches, and Wind Shadow ('되먹임 기반' 사구 역학 모형의 호환 가능성에 대한 이론적 고찰 - 플럭스, 사면조정, 바람그늘 문제를 중심으로 -)

  • RHEW, Hosahng
    • Journal of the Korean association of regional geographers
    • /
    • v.22 no.3
    • /
    • pp.681-702
    • /
    • 2016
  • Two different modelling approaches to dune dynamics have been established thus far; continuous models that emphasize the precise representation of wind field, and feedback-based models that focus on the interactions between dunes, rather than aerodynamics. Though feedback-based models have proven their capability to capture the essence of dune dynamics, the compatibility issues on these models have less been addressed. This research investigated, mostly from the theoretical point of view, the algorithmic compatibility of three feedback-based dune models: sand slab models, Nishimori model, and de Castro model. Major findings are as follows. First, sand slab models and de Castro model are both compatible in terms of flux perspectives, whereas Nishimori model needs a tuning factor. Second, the algorithm of avalanching can be easily implemented via repetitive spatial smoothing, showing high compatibility between models. Finally, the wind shadow rule might not be a necessary component to reproduce dune patterns unlike the interpretation or assumption of previous studies. The wind shadow rule, rather, might be more important in understanding bedform-level interactions. Overall, three models show high compatibility between them, or seem to require relatively small modification, though more thorough investigation is needed.

  • PDF

An Analysis on Shortest Path Search Process of Gifted Student and Normal Student in Information (정보영재학생과 일반학생의 최단경로 탐색 과정 분석)

  • Kang, Sungwoong;Kim, Kapsu
    • Journal of The Korean Association of Information Education
    • /
    • v.20 no.3
    • /
    • pp.243-254
    • /
    • 2016
  • This study has produced a checker of the shortest path search problem with a total of 19 questions as a web-based computer evaluation based on the 'TRAFFIC' questions of PISA 2012. It is because the computer has been settled as an indispensable and significant instrument in the process of solving the problems of everyday life and as a media that is underlying in assessment. Therefore, information gifted students should be able to solve the problem using the computer and give clear enough commands to the computer so that it can perform the procedure. In addition, since it is the age that the computational thinking is affecting every sectors, it should give students new educational stimuli. The relationship between the rate of correct answers and the time took to solve the problem through the shortest route search process showed a significant correlation the variable that affected the problem solving as the difficulty of the question rises due to the increase of nodes and edges turned out to be the node than the edge. It was revealed that information gifted students went through algorithmic thinking in the process of solving the shortest route search problem. And It could be confirmed cognitive characteristics of the information gifted students such as 'ability streamlining' and 'information structure memory'.

Verbal Interaction in Paired Think-Aloud Problem Solving; Comparison of the Characteristics of Small Groups Based on Achievement (해결자·청취자 활동에서의 언어적 상호작용: 성취도에 의한 소집단별 특성 비교)

  • Taehee Noh;Hunsik Kang;Kyungmoon Jeon
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.5
    • /
    • pp.519-529
    • /
    • 2003
  • This study investigated the characteristics of verbal interactions of various small groups based on previous achievement in paired think-aloud problem solving. Two classes of a high school were assigned to the homogeneous and heterogeneous groups, and taught on chemistry. Students from homogeneous groups (high${\cdot}$high, mid?id) and heterogeneous groups (high${\cdot}$mid, high${\cdot}$low) were selected, and their algorithmic problem solving on chemical equation and stoichiometry were audio/video taped. In high${\cdot}$high group, solver's 'require agreement' and listener 'agree' were frequently exhibited. On the other hands, listener's 'point out' and solver's 'modify' were frequently exhibited in mid${\cdot}$mid group, which was also observed in the heterogeneous groups (high${\cdot}$mid, high${\cdot}$low). Many verbal interactions were analyzed to be in symmetrical type. In this type, 'require agreement-agree' of high${\cdot}$high group was the most frequent. 'problem solving-agree' of high${\cdot}$high group was the most frequent in the solver-dominant type, while 'point out-modify' of high${\cdot}$low group in the listener-dominant type. The verbal behaviors related to the solving stage were frequently observed, but there were few related to the reviewing stage.

Reliability and Data Integration of Duplicated Test Results Using Two Bioelectrical Impedence Analysis Machines in the Korean Genome and Epidemiology Study

  • Park, Bo-Young;Yang, Jae-Jeong;Yang, Ji-Hyun;Kim, Ji-Min;Cho, Lisa-Y.;Kang, Dae-Hee;Shin, Chol;Hong, Young-Seoub;Choi, Bo-Youl;Kim, Sung-Soo;Park, Man-Suck;Park, Sue-K.
    • Journal of Preventive Medicine and Public Health
    • /
    • v.43 no.6
    • /
    • pp.479-485
    • /
    • 2010
  • Objectives: The Korean Genome and Epidemiology Study (KoGES), a multicenter-based multi-cohort study, has collected information on body composition using two different bioelectrical impedence analysis (BIA) machines. The aim of the study was to evaluate the possibility of whether the test values measured from different BIA machines can be integrated through statistical adjustment algorithm under excellent inter-rater reliability. Methods: We selected two centers to measure inter-rater reliability of the two BIA machines. We set up the two machines side by side and measured subjects' body compositions between October and December 2007. Duplicated test values of 848 subjects were collected. Pearson and intra-class correlation coefficients for inter-rater reliability were estimated using results from the two machines. To detect the feasibility for data integration, we constructed statistical compensation models using linear regression models with residual analysis and R-square values. Results: All correlation coefficients indicated excellent reliability except mineral mass. However, models using only duplicated body composition values for data integration were not feasible due to relatively low $R^2$ values of 0.8 for mineral mass and target weight. To integrate body composition data, models adjusted for four empirical variables that were age, sex, weight and height were most ideal (all $R^2$ > 0.9). Conclusions: The test values measured with the two BIA machines in the KoGES have excellent reliability for the nine body composition values. Based on reliability, values can be integrated through algorithmic statistical adjustment using regression equations that includes age, sex, weight, and height.