• Title/Summary/Keyword: algebraic approach

Search Result 175, Processing Time 0.025 seconds

A Study on the Effectiveness of Dynamic Geometry Software in Solving High School Analytic Geometry Problems. (탐구형 소프트웨어를 활용한 고등학교 해석 기하 교육에 관한 사례 연구)

  • 황우형;차순규
    • The Mathematical Education
    • /
    • v.41 no.3
    • /
    • pp.341-360
    • /
    • 2002
  • The purpose of the study was to investigate the effectiveness of dynamic software in solving high school analytic geometry problems compared with traditional algebraic approach. Three high school students who have revealed high performance in mathematics were involved in this study. It was considered that they mastered the basic concepts of equations of plane figure and curves of secondary degree. The research questions for the study were the followings: 1) In what degree students understand relationship between geometric approach and algebraic approach in solving geometry problems? 2) What are the difficulties students encounter in the process of using the dynamic software? 3) In what degree the constructions of geometric figures help students to understand the mathematical concepts? 4) What are the effects of dynamic software in constructing analytic geometry concepts? 5) In what degree students have developed the images of algebraic concepts? According to the results of the study, it was revealed that mathematical connections between geometric approach and algebraic approach was complementary. And the students revealed more rely on the algebraic expression over geometric figures in the process of solving geometry problems. The conceptual images of algebraic expression were not developed fully, and they blamed it upon the current college entrance examination system.

  • PDF

An Algebraic Approach to Optimal Control using STWS (STWS를 이용한 최적제어의 대수적 접근에 관한 연구)

  • 오현철;김윤상;안두수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.561-566
    • /
    • 1998
  • This paper presents an algebraic approach to optimal control for time invariant continuous system using STWS(single term Walsh series). In optimal control, it is well known that the design problem with quadratic performance criteria often involves the determination of time-varying feedback gain matrix by solving the matrix nonlinear Riccati equation and of command signal by solving the integral equation, which makes design procedure quite difficult. Therefore, in order to resolve this problem, this paper is introduced to STWS. In this paper, the time-varying feedback gains and command signals are determined by piecewise constant gains which can be easily obtained from algebraic equation using STWS.

  • PDF

Algebraic approach for unknown inputs observer via Haar function (Haar 함수를 이용한 대수적 미지입력관측기 설계)

  • Ahn, P.;Kang, K.W.;Kim, H.K.;Kim, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2086-2088
    • /
    • 2002
  • This paper deals with an algebraic approach for unknown inputs observer by using Haar functions. In the algebraic UIO(unknown input observer) design procedure, coordinate transformation method is adopted to derive the reduced order dynamic system which is decoupled unknown inputs and Haar function and its integral operational matrix is applied to avoid additional differentiation of system outputs.

  • PDF

FDI observer design for linear system via STWS

  • Ahn, Pius;Kim, Min-Hyung;Kim, Jae-Il;Lee, Moon-Hee;Ahn, Doo-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1423-1427
    • /
    • 1997
  • This paper deals with an algebraic approach to FDI observer design procedure. In general, FDI observer can be designed a sLuenbrger-type and equations for unknown input and actuator fault estimation include derivation of system outputs which is not available from the measurement directly. At this point, this paper presents STWS approach which can convert the derivation procedure to the recursive algebraic form by using its orthogonality and disjointess to alleviate such problems.

  • PDF

A Modular Formulation for Flexible Multibody Systems Including Nonlinear Finite Elements

  • Kubler Lars;Eberhard Peter
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.461-472
    • /
    • 2005
  • A formulation for flexible multibody systems (MBS) is investigated, where rigid MBS substructures are coupled with flexible bodies described by a nonlinear finite element (FE) approach. Several aspects that turned out to be crucial for the presented approach are discussed. The system describing equations are given in differential algebraic form (DAE), where many sophisticated solvers exist. In this paper the performance of several solvers is investigated regarding their suitability for the application to the usually highly stiff DAE. The substructures are connected with each other by nonlinear algebraic constraint equations. Further, partial derivatives of the constraints are required, which often leads to extensive algebraic trans-formations. Handcoding of analytically determined derivatives is compared to an approach utilizing algorithmic differentiation.

PARALLEL OPTIMAL CONTROL WITH MULTIPLE SHOOTING, CONSTRAINTS AGGREGATION AND ADJOINT METHODS

  • Jeon, Moon-Gu
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.215-229
    • /
    • 2005
  • In this paper, constraint aggregation is combined with the adjoint and multiple shooting strategies for optimal control of differential algebraic equations (DAE) systems. The approach retains the inherent parallelism of the conventional multiple shooting method, while also being much more efficient for large scale problems. Constraint aggregation is employed to reduce the number of nonlinear continuity constraints in each multiple shooting interval, and its derivatives are computed by the adjoint DAE solver DASPKADJOINT together with ADIFOR and TAMC, the automatic differentiation software for forward and reverse mode, respectively. Numerical experiments demonstrate the effectiveness of the approach.

A LOCAL-GLOBAL VERSION OF A STEPSIZE CONTROL FOR RUNGE-KUTTA METHODS

  • Kulikov, G.Yu
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.2
    • /
    • pp.409-438
    • /
    • 2000
  • In this paper we develop a new procedure to control stepsize for Runge- Kutta methods applied to both ordinary differential equations and semi-explicit index 1 differential-algebraic equation In contrast to the standard approach, the error control mechanism presented here is based on monitoring and controlling both the local and global errors of Runge- Kutta formulas. As a result, Runge-Kutta methods with the local-global stepsize control solve differential of differential-algebraic equations with any prescribe accuracy (up to round-off errors)

A LOCAL-GLOBAL STEPSIZE CONTROL FOR MULTISTEP METHODS APPLIED TO SEMI-EXPLICIT INDEX 1 DIFFERENTIAL-ALGEBRAIC EUATIONS

  • Kulikov, G.Yu;Shindin, S.K.
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.3
    • /
    • pp.697-726
    • /
    • 1999
  • In this paper we develop a now procedure to control stepsize for linear multistep methods applied to semi-explicit index 1 differential-algebraic equations. in contrast to the standard approach the error control mechanism presented here is based on monitoring and contolling both the local and global errors of multistep formulas. As a result such methods with the local-global stepsize control solve differential-algebraic equation with any prescribed accuracy (up to round-off errors). For implicit multistep methods we give the minimum number of both full and modified Newton iterations allowing the iterative approxima-tions to be correctly used in the procedure of the local-global stepsize control. We also discuss validity of simple iterations for high accuracy solving differential-algebraic equations. Numerical tests support the the-oretical results of the paper.

B-SPLINE TIGHT FRAMELETS FOR SOLVING INTEGRAL ALGEBRAIC EQUATIONS WITH WEAKLY SINGULAR KERNELS

  • Shatnawi, Taqi A.M.;Shatanawi, Wasfi
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.2
    • /
    • pp.363-379
    • /
    • 2022
  • In this paper, we carried out a new numerical approach for solving integral algebraic equations with weakly singular kernels. The novel method is based on the construction of B-spline tight framelets using the unitary and oblique extension principles. Some numerical examples are given to provide further explanation and validation of our method. The result of this study introduces a new technique for solving weakly singular integral algebraic equation and thus in turn will contribute to providing new insight into approximation solutions for integral algebraic equation (IAE).

AGGREGATION OPERATORS OF CUBIC PICTURE FUZZY QUANTITIES AND THEIR APPLICATION IN DECISION SUPPORT SYSTEMS

  • Ashraf, Shahzaib;Abdullah, Saleem;Mahmood, Tahir
    • Korean Journal of Mathematics
    • /
    • v.28 no.2
    • /
    • pp.343-359
    • /
    • 2020
  • The paper aim is to resolve the issue of ranking to the fuzzy numbers in decision analysis, artificial intelligence and optimization. In the literature lot of ideologies have been established for ranking to the fuzzy numbers, that ideologies have some restrictions and limitations. In this paper, we proposed a method based on cubic picture fuzzy information's, for ranking to defeat the existing restrictions. Further introduced some cubic picture fuzzy algebraic and cubic picture fuzzy algebraic* aggregated operators for aggregated the information. Finally, a multi-attribute decision making problem is assumed as a practical application to establish the appropriateness and suitability of the proposed ranking approach.