• Title/Summary/Keyword: algal growth potential

Search Result 71, Processing Time 0.022 seconds

Probe of Algal Growth Potential (AGP) by Physio-Biochemical Analysis of Microalgae in the Stagnant Watershed (정체 수역 내에서 미세조류의 생리생화학적 분석에 의한 수화발생 잠재력 탐색)

  • Kim, Mi-Kyung;Shin, Jae-Ki;Ji, Hong-Ki
    • ALGAE
    • /
    • v.20 no.2
    • /
    • pp.127-132
    • /
    • 2005
  • Algal growth potentials were probed by algal growth rates, maximal PSII quantum yields and ATP amount as well as dry weights of algae to evaluate the water fertility due to the algal growth in the stream (CT) and stagnant watershed (WW). Oscillatoria agardhii (CY) and Coelastrum reticulatum (CH) were cultured in nitrogen (N) and phosphorus (P) starvation media (CH-10 medium) and re-inoculated in CT and WW for 7 days. Cell division rates of CY were the highest (k = 7.5) in WW after N starvation, while those of CH were the hight (k = 2.97) in WW after P starvation. The growth of CY was limited by P, while that of CH was by N. Conversely, maximal PSII quantum yields of CH were generally higher than those of CY in CT and WW according to culture time. CY was much more sensibly adapted than CH according to the variations of nutrient amounts in WW. The water fertility was much higher in WW than in CT. The potential assessment tool for water fertility will be able to compensate for the limit of physio-chemical analyses and to be applied as a monitoring system to forecast red-tide.

Evaluation of Algal Growth Limiting Factor in the Nakdong River by MBOD Method (MBOD법에 의한 낙동강의 조류증식 제한인자 추정)

  • 송교욱;서인숙
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.469-479
    • /
    • 1995
  • The increase of population and industrial activities had brought into eutrophication in the Nakdong river. A remarkable acceleration of eutrophication brought about serious problems for water supply. Therefore, for the purpose of conservation of water quality in the Nakdong river it is necessary to control nutrients. MBOD method was use to evaluate algal growth limiting factor and algal growth potential in the Nakdong river from June to August 1994. The modified biochemical oxygen demand(MBOD) depends on the amount of available inorganic nutrient and organic substrate during 5 day incubation in the dark at 2$0^{\circ}C$. The MBOD assay depends on inorganic nutrients such as P and N as well as reduced carbon and called the MBOD, the MBOD-P, and the MBOD-N, respectively. The results of bioassay by MBOD(Modified BOD) method showed that the MBOD, MBOD-P and MBOD-N value were found to be in the ranges of 3.8~96.0 mg$O_2$/l, 5.6~94.0 mg$O_2$/l and 42.0~220 mg$O_2$/l, respectively. And the the bioassay value was found to be the highest in Koryong area and the lowest in Waekwan area throughout the Nakdong river. The variations of MBOD-P and MBOD-N value showed similar tendencies to the variations of phosphorus and nitrogen value, respectively. By MBOD method, the relationships of MBOD, MBOD-P and MBOD-N value were MBOD ≒ MBOD-P 《 MBOD-N. The MBOD value was nearly equal to the MBOD-P value, and the MBOD-N value was 3 to 20 times more than the MBOD-P value, approximately. Therefore, in the Nakdong river, phosphorus was the limiting factor for algal growth during summer season. The algal growth potential as the concentration of chlorophyll-a in the summer was maximum 5 times more than standing crop as it.

  • PDF

Pre-ozonation for removal of algal organic matters (AOMs) and their disinfection by-products (DBPs) formation potential

  • Jing Wang;Se-Hyun Oh;Yunchul Cho
    • Membrane and Water Treatment
    • /
    • v.14 no.2
    • /
    • pp.77-83
    • /
    • 2023
  • As a result of algal bloom, algal organic matters (AOMs) are rapidly increased in surface water. AOMs can act as precursors for the formation of harmful disinfection by-products (DBPs), which are serious problems in water treatment and human health. The main aim of this study is to characterize the formation of DBPs from AOMs produced by three different algae such as Oscillatoria sp., Anabaena sp., and Microcystis aeruginosa under different algal growth phases. In an effort to examine formation of DBPs during chlorination, chloroform (TCM), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) were determined under various CT (product of disinfectant concentration and contact time, mg·min/L) values. Generally, the amounts of DBPs tended to increase with increasing CT values at the most growth phases. However, there was a significant difference between the amounts of DBPs produced by the three algal species at different growth phases. This result is likely due to the chemical composition variability of AOM from different algae at different growth phases. In addition, the effect of pre-ozonation on coagulation for the removal of AOMs from three algal species was investigated. The pre-ozonation had a positive effect on the coagulation/flocculation of AOMs.

Evaluation of Algal Growth Limiting Factor in the Nakdong River by MBOD Method (MBOD법에 의한 낙동강의 조류증식 제한인자 추정)

  • Song, Kyo-Ook;Seo, In-Suk;Shin, Sung-Kyo;Lee, Suk-Mo;Park, Chung-Kil
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.83-83
    • /
    • 1995
  • The increase of population and industrial activities had brought into eutrophication in the Nakdong river. A remarkable acceleration of eutrophication brought about serious problems for water supply. Therefore, for the purpose of conservation of water quality in the Nakdong river it is necessary to control nutrients. MBOD method was use to evaluate algal growth limiting factor and algal growth potential in the Nakdong river from June to August 1994. The modified biochemical oxygen demand(MBOD) depends on the amount of available inorganic nutrient and organic substrate during 5 day incubation in the dark at 20$^{circ}C$. The MBOD assay depends on inorganic nutrients such as P and N as well as reduced carbon and called the MBOD, the MBOD-P, and the MBOD-N, respectively. The results of bioassay by MBOD(Modified BOD) method showed that the MBOD, MBOD-P and MBOD-N value were found to be in the ranges of 3.8∼96.0 mg$O_2$/l, 5.6∼94.0 mg$O_2$/l and 42.0∼220 mg$O_2$/l, respectively. And the the bioassay value was found to be the highest in Koryong area and the lowest in Waekwan area throughout the Nakdong river. The variations of MBOD-P and MBOD-N value showed similar tendencies to the variations of phosphorus and nitrogen value, respectively. By MBOD method, the relationships of MBOD, MBOD-P and MBOD-N value were MBOD ≒ MBOD-P 《 MBOD-N. The MBOD value was nearly equal to the MBOD-P value, and the MBOD-N value was 3 to 20 times more than the MBOD-P value, approximately. Therefore, in the Nakdong river, phosphorus was the limiting factor for algal growth during summer season. The algal growth potential as the concentration of chlorophyll-a in the summer was maximum 5 times more than standing crop as it.

Effects of Nitrogen Sources and C/N Ratios on the Lipid-Producing Potential of Chlorella sp. HQ

  • Zhan, Jingjing;Hong, Yu;Hu, Hongying
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1290-1302
    • /
    • 2016
  • Microalgae are being researched for their potential as attractive biofuel feedstock, particularly for their lipid production. For maximizing biofuel production, it is necessary to explore the effects of environmental factors on algal lipid-producing potential. In this study, the effects of nitrogen (N) sources (NO2-N, NO3-N, urea-N, NH4-N, and N-deficiency) and carbon-to-nitrogen ratios (C/N= 0, 1.0, 3.0, and 5.0) on algal lipid-producing potential of Chlorella sp. HQ were investigated. The results showed that for Chlorella growth and lipid accumulation potential, NO2-N was the best amongst the nitrogen sources, and NO3-N and urea-N also contributed to algal growth and lipid accumulation potential, but NH4-N and N-deficiency instead caused inhibitory effects. Moreover, the results indicated that algal lipid-producing potential was related to C/N ratios. With NO2-N treatment and carbon addition (C/N = 1.0, 3.0, and 5.0), total lipid yield was enhanced by 12.96-20.37%, but triacylglycerol (TAG) yields decreased by 25.52-94.31%. As for NO3-N treatment, carbon addition led to a 17.82-57.43%/25.86-82.67% reduction of total lipid/TAG yields. When NH4-N was used as the nitrogen source, total lipid/TAG yields were increased by 46.67-113.33%/28.99-74.76% with carbon addition. The total lipid/TAG yields of urea-N treatment varied with C/N ratios. Overall, the highest TAG yield (TAG yield: 38.75 ± 5.21 mg/l; TAG content: 44.16 ± 4.35%) was achieved under NO2-N treatment without carbon addition (C/N = 0), the condition that had merit for biofuel production.

Effect of the Sewage and Wastewater Plant Effluent on the Algal Growth Potential in the Nakdong River Basin (낙동강 수계 하.폐수 처리시설의 방류수가 조류 성장 잠재력에 미치는 영향)

  • Seo,Jeong-Gwan;Lee,Jae-Jeong;Yang,Sang-Yong;Jeong,Ik-Gyo
    • ALGAE
    • /
    • v.18 no.2
    • /
    • pp.157-167
    • /
    • 2003
  • Effect of the effluent of the sewage and wastewater plants on the algal growth was investigated from the 19 plants located in the Nakdong river basin. Most of the samples showed high values of the algal growth potential (AGP) when they were mixed with natural river water at 20% of final concentration. At 20% of the mixing ratio, the mixed effluents of sewage and wastewater showed 3.5 and 1.8 times higher AGP than those of the natural river water. The higher AGP values are attributable to the high contents of phosphorus and ammonium in the effluent. The mixing ratio of effluents of the discharge/river flow was highest in the Kumho River (42.8%) followed by the middle of Nakdong River (22.7%), Kam Stream (13.9%), Byungsung Stream (13.3%), Yangsan Stream (7.9%), and Young River (5.4%). Comparison of the trophic state of the effluents with natural river water indicated that the effluents showed higher trophic values than natural water. Concentrations of total phosphorus, total nitrogen and conductivity in the effluents were 12.3, 4.9 and 5.3 times higher than the those found in natural river water respectively. The AGP values were highly related with the trophicity of the water especially on the concentrations of phosphate and ammonium. Toxicities of the treated sewage water, wastewater and livestock waste water tested by the luminescent bacteria, Vibrio fischerii were generally low.

Evaluation of Algal Growth Potential in the Mangyeong River by MBOD method (MBOD법에 의한 만경강 수계의 조류성장잠재력 평가)

  • Kim, Jong Gu;Kim, Jun U
    • Journal of Environmental Science International
    • /
    • v.13 no.9
    • /
    • pp.807-817
    • /
    • 2004
  • The modified biochemical oxygen demand (MBOD) were conducted to evaluate the water quality and fertility in the Mangyeong river from november 2002 to april 2003. MBOD method was used to evaluate algal growth potentials and their limiting factors. MBOD depends on the amount of available inorganic nutrient and organic substrate during 5-day incubation in the dark condition at $20^{\circ}C.$ The MBOD assay depends on inorganic nutrients such as phosphorus and nitrogen as well as reduced carbon as called MBOD, MBOD-P, and MBOD-N, respectively. The concentration of pollutants were in the range of 3.08~48.36 mg/L for COD. The concentration of nutrients were in the range of 0.37~111.62 mg/L for dissolved inorganic nitrogen (DIN) and 0.00~1.03 mg/L for dissolved inorganic phosphorus (DIP). The results of MBOD bioassay showed that the MBOD, MBOD-P and MBOD-N values were 15~173 mg $O_2/L,$ 13~165 mg $O_2/L$ and 66~175 mg $O_2/L$ ranges, respectively. The MBOD values are found to be the highest in Iksan River and the lowest in Hari River throughout the Mangyeong River. The relationships of MBOD, MBOD-P and MBOD-N in MBOD method were generally found in MBOD$\risingdotseq$ MBOD-P$\risingdotseq$MBOD-N. But the result of Gosan was appeared to MBOD$\risingdotseq$MBOD-N > MBOD-P. The MBOD-N value was higher 3 to 5 times than the MBOD-P value in the Gosan station. The algal growth potentials expressed as the concentration of chlorophyll-a were maximum 20 times more than algal biomass in the water column.

Akinete Germination and Algal Growth Potential Test of Cyanobacterium Anabaena circinalis on Different Waters in Lake Paldang (팔당호 현장수를 이용한 남조류 Anabaena circinalis의 발아 및 성장 잠재력 시험)

  • Park, Myung-Hwan;Lim, Byung-Jin;Seo, Wan-Bum;Park, Chae-Hong;Kim, Keon-Hee;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.4
    • /
    • pp.287-295
    • /
    • 2015
  • Akinete germination potential and algal growth potential (AGP) using Anabaena circinalis were investigated September 2014 and March 2015 at the three sites (PD-1, PD-2 and PD-3) of Lake Paldang. Nitrogen and phosphorus concentrations were higher at PD-2 than at PD-1 and PD-3. TSI (TN) values at the three field sites were in the range of 65~85, which were the level of eutrophic or hypereutrophic state. TSI (TP) also showed high values (49~68), which were the level of mesotrophic or eutrophic state. Akinete germination potential was higher at PD-2 with increased nutrient (nitrogen and phosphorus), and algal growth potential also increased with nutrient enrichment.

Algal Growth Potential Test (AGPT) in Streams and Embayment of the Okchon Stream Watershed, Korea (옥천천 유역의 하천과 만곡부에서 조류 생장 잠재력 측정)

  • Sin,Jae-Gi;Kim,Dong-Seop;Lee,Hye-Geun;Maeng,Seung-Jin;Hwang,Sun-Jin
    • ALGAE
    • /
    • v.18 no.2
    • /
    • pp.169-176
    • /
    • 2003
  • Algal growth potential test (AGPT) bioassay were conducted to evaluate the stream and reservoir water in the Okchon Stream Watershed during May to September 2002. The water quality of the stream water was clean in the upstream, deteriorating toward the downstream. In particular, SRP and $NH_4$ significantly increased due to treated wastewater. The average AGPT value of the Okchon Stream watershed was 22.4 mg dw ${\cdot}l^{-1}$, with the range of 0- 195.7 mg dw ${\cdot}l^{-1}$. AGPT value was the highest immediately after inflow of treated wastewater, averaging 91.3 mg dw${\cdot}l^{-1}$. AGPT was highly correlated with SRP, $NH_4$ and TIN factors, with P having the greatest effect on the growth of algae. Among N components, $NH_4$ was preferred to $NO_3$ for the growth of algae. Likewise, AGPT was closely linked to meteological and hydrological effects and development of natural phytoplankton. In survey stations, mesotrophic, eutrophic and hypertrophic conditions accounted for 43%, 21% and 36%, respectively. On the other hand, hypertrophic condition focused on the downstream reaches. AGPT was useful in determining not only the limiting nutrients but also the water fertility for the growth of algae. Based on the AGPT results, the management of point sources for water pollution in treated wastewater was important in the protection of aquatic environment in the stream and embayment.

Application of Algal Growth Potential Test (AGPT) on the Water Quality of the Chinyang Reservoir and the Nam River (진양호와 남강의 수질에 대한 Algal Growth Potential Test (AGPT) 적용)

  • Lee, Ok-Hee;Cho, Kyung-Je;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.1 s.102
    • /
    • pp.57-65
    • /
    • 2003
  • The algal growth potential test (AGPT) bioassay were conducted to assess the water quality and fertility in the Chinyang Reservoir and the lower part of the Nam River from August 2000 to July 2001, The AGPT value of the Chinyang Reservoir ranged from 0 to 23.4 mg dw $1^{-1}$, while 79% of the algae cultivation have not grown. The AGPT value was in proportion to phosphorus concentration of the water, and it was less when chlorophyll-a was high. This value was higher in the middle and lower layers than in the upper layer, and in the inflow part where the water is shallower than in the lacustrine. The AGPT value has increased in the whole reservoir in August${\sim}$September when the water volume is high. In contrast, the AGPT value in the Nam River varied greatly compared to that of the reservoir, and ranged from 0 to 252.0 mg dw $1^{-1}$ and 65% of the algae cultivation have grown. The value was less than 10 mg dw $1^{-1}$ in the upstream, over the point where the treated wastewater discharged. It was 57 mg dw $1^{-1}$ on the average in the downstream, except in March and July when the discharged water influenced greatly, exceeding the hypertrophic condition. The result of AGPT shows the differences in the time and space on the reservoir and the streams. The AGPT value has increased in July${\sim}$September, and in December in the inflow part of the reservoir; in March and August${\sim}$December in the lower part; and in January, May, and November in the streams. AGPT is useful not only in defining the influence of the limiting nutrients on the algal growth, but also in evaluating the nutrients fertility in the inland water.