• Title/Summary/Keyword: algae growth

Search Result 573, Processing Time 0.029 seconds

Incorporating concepts of biodiversity into modern aquaculture: macroalgal species richness enhances bioremediation efficiency in a lumpfish hatchery

  • Knoop, Jessica;Barrento, Sara;Lewis, Robert;Walter, Bettina;Griffin, John N.
    • ALGAE
    • /
    • v.37 no.3
    • /
    • pp.213-226
    • /
    • 2022
  • Aquaculture is one of the fastest growing food producing sectors; however, intensive farming techniques of finfish have raised environmental concerns, especially through the release of excessive nutrients into surrounding waters. Biodiversity has been widely shown to enhance ecosystem functions and services, but there has been limited testing or application of this key ecological relationship in aquaculture. This study tested the applicability of the biodiversity-function relationship to integrated multi-trophic aquaculture (IMTA), asking whether species richness can enhance the efficiency of macroalgal bioremediation of wastewater from finfish aquaculture. Five macroalgal species (Chondrus crispus, Fucus serratus, Palmaria palmata, Porphyra dioica, and Ulva sp.) were cultivated in mono- and polyculture in water originating from a lumpfish (Cyclopterus lumpus) hatchery. Total seaweed biomass production, specific growth rates (SGR), and the removal of ammonium (NH4+), total oxidised nitrogen (TON), and phosphate (PO43-) from the wastewater were measured. Species richness increased total seaweed biomass production by 11% above the average component monoculture, driven by an increase in up to 5% in SGR of fast-growing macroalgal species in polycultures. Macroalgal species richness further enhanced ammonium uptake by 25%, and TON uptake by nearly 10%. Phosphate uptake was not improved by increased species richness. The increased uptake of NH4+ and TON with increased macroalgal species richness suggests the complementary use of different nitrogen forms (NH4+ vs. TON) in macroalgal polycultures. The results demonstrate enhanced bioremediation efficiency by increased macroalgal species richness and show the potential of integrating biodiversity-function research to improve aquaculture sustainability.

In-Depth Characterization of Wastewater Bacterial Community in Response to Algal Growth Using Pyrosequencing

  • Lee, Jangho;Lee, Juyoun;Lee, Tae Kwon;Woo, Sung-Geun;Baek, Gyu Seok;Park, Joonhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1472-1477
    • /
    • 2013
  • Microalgae have been regarded as a natural resource for sustainable materials and fuels, as well as for removal of nutrients and micropollutants from wastewater, and their interaction with bacteria in wastewater is a critical factor to consider because of the microbial diversity and complexity in a variety of wastewater conditions. Despite their importance, very little is known about the ecological interactions between algae and bacteria in a wastewater environment. In this study, we characterized the wastewater bacterial community in response to the growth of a Selenastrum gracile UTEX 325 population in a real municipal wastewater environment. The Roche 454 GS-FLX Titanium pyrosequencing technique was used for indepth analysis of amplicons of 16S rRNA genes from different conditions in each reactor, with and without the algal population. The algal growth reduced the bacterial diversity and affected the bacterial community structure in the wastewater. The following in-depth analysis of the deep-sequenced amplicons showed that the algal growth selectively stimulated Sphingobacteria class members, especially the Sediminibacterium genus population, in the municipal wastewater environment.

Effect of high free ammonia concentration on microalgal growth and substrate uptake (폐수 내 고농도 free ammonia(FA)가 미세조류의 성장 및 기질제거에 미치는 영향 평가)

  • Kim, Eun-Ji;Cho, Jae Hyung;Noh, Kyung Ho;Nam, guisook;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.715-723
    • /
    • 2016
  • This study investigated the effect of high concentration of free ammonia on microalgal growth and substrate removal by applying real wastewater nitrogen ratio. To test of this, the conditions of free ammonia 1, 3, 6, 9, 12, 15 mg-N/L are compared. After 3 days of incubation, algal growth of Chlorella vulgaris and carbon removal rate are respectively lower in the reactors of FA 12, 15 mg-N/L compared to the others. This indicates that the high concentration of free ammonia, in this case, above 12 mg-N/L, has negative effect on algal growth and metabolic activity. Also, high concentration of free ammonia causes the proton imbalance, ammonium accumulation in algae and has toxicity for these reasons. So, we have to consider free ammonia in applying the microalgae to wastewater treatment system by the way of diluting wastewater or controlling pH and temperature.

Comparison of Saccharina japonica-Undaria pinnatifida Mixture and Minoxidil on Hair Growth Promoting Effect in Mice

  • Park, Ki Soo;Park, Dae Hwan
    • Archives of Plastic Surgery
    • /
    • v.43 no.6
    • /
    • pp.498-505
    • /
    • 2016
  • Background Algae have traditionally been used for promotion of hair growth. Use of hair regrowth drugs, such as minoxidil, is limited due to side effects. The aim of this study was to examine a mixture of Saccharina japonica and Undaria pinnatifida (L-U mixture) on hair growth and to compare the promoting effect of hair growth by a 3% minoxidil and a L-U mixture. Methods To evaluate the hair growth-promoting activity, saline, 50% ethanol, 3% minoxidil, and the L-U mixture were applied 2 times a day for a total of 14 days on the dorsal skin of C57BL/6 mice after depilation. Analysis was determined by using a high-resolution hair analysis system, real-time polymerase chain reaction, and H&E staining. Results On day 14, the hair growth effect of the L-U mixture was the same as that of the 3% minoxidil treatment. The L-U mixture significantly (P<0.05) stimulated hair growth-promoting genes, as vascular endothelial growth factor (VEGF) and insulin-like growth factor -1. Increase of VEGF was observed in the L-U mixture group compared with minoxidil and the negative control. In contrast, the L-U mixture suppressed the expression of transforming growth factor-${\beta}1$, which is the hair loss-related gene. In histological examination in the L-U mixture and minoxidil groups, the induction of an anagen stage of hair follicles was faster than that of control groups. Conclusions This study provides evidence that the L-U mixture can promote hair growth in mice, similar to the effect from minoxidil, and suggests that there is potential application for hair loss treatments.

Application of Algal Growth Potential Test (AGPT) on the Water Quality of the Chinyang Reservoir and the Nam River (진양호와 남강의 수질에 대한 Algal Growth Potential Test (AGPT) 적용)

  • Lee, Ok-Hee;Cho, Kyung-Je;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.1 s.102
    • /
    • pp.57-65
    • /
    • 2003
  • The algal growth potential test (AGPT) bioassay were conducted to assess the water quality and fertility in the Chinyang Reservoir and the lower part of the Nam River from August 2000 to July 2001, The AGPT value of the Chinyang Reservoir ranged from 0 to 23.4 mg dw $1^{-1}$, while 79% of the algae cultivation have not grown. The AGPT value was in proportion to phosphorus concentration of the water, and it was less when chlorophyll-a was high. This value was higher in the middle and lower layers than in the upper layer, and in the inflow part where the water is shallower than in the lacustrine. The AGPT value has increased in the whole reservoir in August${\sim}$September when the water volume is high. In contrast, the AGPT value in the Nam River varied greatly compared to that of the reservoir, and ranged from 0 to 252.0 mg dw $1^{-1}$ and 65% of the algae cultivation have grown. The value was less than 10 mg dw $1^{-1}$ in the upstream, over the point where the treated wastewater discharged. It was 57 mg dw $1^{-1}$ on the average in the downstream, except in March and July when the discharged water influenced greatly, exceeding the hypertrophic condition. The result of AGPT shows the differences in the time and space on the reservoir and the streams. The AGPT value has increased in July${\sim}$September, and in December in the inflow part of the reservoir; in March and August${\sim}$December in the lower part; and in January, May, and November in the streams. AGPT is useful not only in defining the influence of the limiting nutrients on the algal growth, but also in evaluating the nutrients fertility in the inland water.

Evaluation of Growth Inhibition for Microcystis aeruginosa with Different Frequency of Ultrasonic Devices (초음파 장치의 주파수 변화에 따른 Microcystis aeruginosa의 성장억제 평가)

  • Jang, So Ye;Joo, Jin Chul;Kang, Eun Byeol;Ahn, Chae Min;Park, Jeongsu;Jeong, Moo Il;Lee, Dong Ho
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.3
    • /
    • pp.143-153
    • /
    • 2021
  • The growth inhibition effects of M. aeruginosa were verified using large volume (7.2 L) of algae samples and ultrasonication (high frequency of 1.6 MHz vs. low frequency of 23 kHz) in lab-scale experiment. The chlorophyll-a (chl-a) and cell number decreased gradually after 6 hr sonication with high frequency of 1.6 MHz whereas both decreased sharply after 6 hr sonication with low frequency of 23 kHz. Additionally, the first order degradation coefficient (k) values after sonication were greater than those during sonication. These results indicate that relatively low sonication energy per volume may affect the cell membrane and internal organs of M. aeruginosa in a slow and retarded manner and resulted in gradual decrease of cell numbers of M. aeruginosa. Based on the comparison of chl-a and cell number of M. aeruginosa after sonication, low frequency of 23 kHz is superior for growth inhibition of M. aeruginosa, since low frequency of 23 kHz easily penetrates the cell membrane and ruptures the internal organs including gas vesicles. As is evident in SEM and TEM images, ruptured cell membranes were clearly observed for low frequency of 23 kHz. Finally, the microcystin-LR in water is not detected and considered to be harmless in aquaculture systems.

Feeding by common heterotrophic protists on the mixotrophic dinoflagellate Ansanella granifera (Suessiaceae, Dinophyceae)

  • Hee Chang Kang;Hae Jin Jeong;An Suk Lim;Jin Hee Ok;Ji Hyun You;Sang Ah Park;Se Hee Eom
    • ALGAE
    • /
    • v.38 no.1
    • /
    • pp.57-70
    • /
    • 2023
  • The mortality rate of red-tide dinoflagellates owing to predation is a major parameter that affects their population dynamics. The dinoflagellates Ansanella granifera and Ansanella sp. occasionally cause red tides. To understand the interactions between common heterotrophic protists and A. granifera, we explored the feeding occurrence of nine heterotrophic protists on A. granifera and the growth and ingestion rates of the heterotrophic dinoflagellate Gyrodinium dominans on A. granifera as a function of prey concentration and those of Oxyrrhis marina at a single high prey concentration. The heterotrophic dinoflagellates Aduncodinium glandula, G. dominans, Gyrodinium moestrupii, Luciella masanensis, Oblea rotunda, O. marina, Polykrikos kofoidii, and Pfiesteria piscicida and the naked ciliate Strombidium sp. were able to feed on A. granifera. With increasing mean prey concentrations, the growth and ingestion rates of G. dominans feeding on A. granifera rapidly increased and became saturated or slowly increased. The maximum growth and ingestion rates of G. dominans on A. granifera were 0.305 d-1 and 0.42 ng C predator-1 d-1 (3.8 cells predator-1 d-1), respectively. Furthermore, the growth and ingestion rates of O. marina on A. granifera at 1,700 ng C mL-1 (15,454 cells mL-1) were 0.037 d-1 and 0.19 ng C predator-1 d-1 (1.7 cells predator-1 d-1), respectively. The growth and ingestion rates of G. dominans and O. marina feeding on A. granifera were almost the lowest among those on the dinoflagellate prey species. Therefore, G. dominans and O. marina may prefer A. granifera less than other dinoflagellate prey species. The low mortality rate of A. granifera may positively affect its bloom formation.

A Study on the Nutrient Removal of Wastewater Using Scenedemus sp. (Scenedesmus sp.를 이용한 하수의 영양물질 제거에 관한 연구)

  • 이희자
    • Journal of Environmental Science International
    • /
    • v.8 no.4
    • /
    • pp.443-449
    • /
    • 1999
  • This paper describe the working of algal culture system under batch and continuous feeding effluents in biological treatment process. The main objective of this study was the determination of fundamental opeating parameters such as dilution rates, light intensity, biomass concentration, nutrients contents, which engender an effective nutrient and organic waste removal process. The results of this research indicate that the algae system will remove effectively nutrient and organic waste. In batch cultures, 91.8% dissolved orthophosphate and 83.3% ammonia nitrogen were removed from the sewage in ten days. In continuous flow systems, a detention time of 2.5 days was found adequate to remove 91% T-P, 87% T-N and 95% $NH_3-N$. At 22-28$^{\circ}C$, 60 rpm, with an intensity of 3500 Lux, the specific growth rate, k was 0.59/day in batch experiments. The optimal growth temperature and nutrients rate (N/P) were respectively $25^{\circ}C$ and 3~5. With an abundant supply of untrients, it was possible to sustain substantial population densities in the temperature range of 22~28$^{\circ}C$.

  • PDF

Analysis of Oppositive Interaction between Cd and Zn Toxicity in Coastal Algae (연안 조류에서 Cd와 Zn 독성의 반대 작용 분석)

  • 이봉헌;김정호;정성옥;김성미;박흥재
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1069-1074
    • /
    • 2002
  • The growth and heavy metal experiments revealed oppositive interactions between toxic metals(Zn and Cd) and Mn when the coastal diatom T. pseudonana were used. Cd and Zn inhibited the algal growth rate only at low Mn ion concentrations and this effect could be accounted for an inhibition of cellular Mn take by the toxic metals. Mn and Zn inhibited cellular Cd take and this indicated a reciprocal effects among the metals with respect to metal take. Saturation kinetics modeling of the take data was consistent with two metals competing with each other for binding to the Mn take system and with both Cd and Mn being transported into the cell by that system. Mathematical modeling of Mn and Cd take data revealed evidence fur a Cd efflux system.

Top-down Fish Biomanipulation Experiments on Algal Removal Effects (조류제거 효과에 대한 Top-down 어류 조작실험)

  • Lee, Sang-Jae;Lee, Jae-Yon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.3
    • /
    • pp.431-438
    • /
    • 2007
  • This study was to test algal removal efficiency by top-down fish biomanipulation experiments in the laboratory during Agust${\sim}$September 2000. We selected eight candidate fishes for the biomanipulation. We set up the experiments of eight fish-treatment tanks (3${\sim}$6 fishes) with initial chlorophyll-${\alpha}$ concentrations (CHL-${\alpha}$) of $100{\sim}120{\mu}g\;L^{-1}$ and one control tank including no fish with the same initial CHL-${\alpha}$. All tanks were maintained water quality of dissolved oxygen $(5.3{\sim}8.2mg\;L^{-1})$ and pH $(7.4{\sim}8.1)$ in the tests. During the biomanipulation, DO and pH in the treatments were lower than those of the control, while conductivity increased gradually in the treatments. Biomanipulation experiments showed that CHL-${\alpha}$ increased 13% and 0% (mean values of 8 fishes) in the controls and treatments, respectively. These results indicate that algal growth was maintained in the control and fish treatments, but the rate of CHL-${\alpha}$ in the treatments was lower than that of the control. The removal rates of bluegreens algae decreased 32% in the control, and 20% in treatments (mean values of 8 fishes) respectively, In other words, bluegreen algae showed greater growth rate in the fish treatments than the control and this was due to higher nutrients supplied from fish excretions. Overall, simple fish biomanipulation on algal control was not effective at all in these laboratory tests.